What Is a Network Security Engineer’s Salary?
February 20, 2024
Article
This course is part of Exam Prep MLS-C01: AWS Certified Specialty Machine Learning Specialization
Instructor: Whizlabs Instructor
3,870 already enrolled
Included with
(21 reviews)
Recommended experience
Beginner level
Minimum two year of hands-on experience in architecting, building or running ML/deep learning workloads on the AWS Cloud.
(21 reviews)
Recommended experience
Beginner level
Minimum two year of hands-on experience in architecting, building or running ML/deep learning workloads on the AWS Cloud.
Analyze various data gathering techniques
Analyze techniques to handle missing data
Implement feature extraction and feature selection with Principal Component Analysis and Variance Thresholds
Add to your LinkedIn profile
7 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Data Engineering in AWS is the first course in the AWS Certified Machine Learning Specialty specialization. This course helps learners to analyze various data gathering techniques. They will also gain insight to handle missing data. This course is divided into two modules and each module is further segmented by Lessons and Video Lectures. This course facilitates learners with approximately 2:30-3:00 Hours Video lectures that provide both Theory and Hands -On knowledge. Also, Graded and Ungraded Quiz are provided with every module in order to test the ability of learners.
Module 1: Introduction to Data Engineering Module 2: Feature extraction and feature selection Candidate should have at least two years of hands-on experience architecting, and running ML workloads in the AWS Cloud. One should have basic ML algorithms knowledge. By the end of this course, a learner will be able to: - Understand various data-gathering techniques - Analyze techniques to handle missing data - Implement feature extraction and feature selection with Principal Component Analysis and Variance Thresholds.
Welcome to Week 1 of Data Engineering in AWS Course. This week will begin with understanding SageMaker Jupyter Notebooks setup. We’ll also get an overview of handling and dropping Missing Data.This week will end by analyzing information about Gathering data.
9 videos2 readings2 assignments1 discussion prompt
Welcome to Week 2 of Data Engineering in AWS Course. This week , we’ll learn to perform Feature extraction and feature selection with Principal Component Analysis and Variance Thresholds. We’ll also explore feature extraction and feature selection techniques. By the end of this week, we’ll analyze AWS Migration services and tools.
9 videos4 readings5 assignments
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Providing certification training since the year 2000, Whizlabs is the pioneer among online training providers across the globe. We are dedicated to helping you learn the skills you need to transform your career in the IT industry. We provide certification training in the form of Video Courses, Practice Tests, Hands-on Labs and Sandbox in various disciplines such as Cloud Computing, DevOps, Cyber Security, Java, Big Data, Snowflake, CompTIA, Agile, Linux, CCNA, Blockchain, and much more.
Amazon Web Services
Course
Whizlabs
Course
Whizlabs
Course
Whizlabs
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.