What Is Programming? And How To Get Started
January 28, 2025
Article
This course is part of Data Literacy Specialization
Instructor: Jennifer Bachner, PhD
9,491 already enrolled
Included with
(171 reviews)
Recommended experience
Beginner level
An interest in learning how to make sense of data
(171 reviews)
Recommended experience
Beginner level
An interest in learning how to make sense of data
Add to your LinkedIn profile
13 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This course introduces students to data and statistics. By the end of the course, students should be able to interpret descriptive statistics, causal analyses and visualizations to draw meaningful insights.
The course first introduces a framework for thinking about the various purposes of statistical analysis. We’ll talk about how analysts use data for descriptive, causal and predictive inference. We’ll then cover how to develop a research study for causal analysis, compute and interpret descriptive statistics and design effective visualizations. The course will help you to become a thoughtful and critical consumer of analytics. If you are in a field that increasingly relies on data-driven decision making, but you feel unequipped to interpret and evaluate data, this course will help you develop these fundamental tools of data literacy.
When most people think about using data, they quickly jump to considering the best way to analyze it with statistical methods. A good analysis, however, begins with a strong theoretical framework. A good theory will guide the collection of data, selection of appropriate statistical methods and interpretation of the results. Further, the theory will determine what kind of research design is needed, such as an observational study or experiment. This module will focus on the development of high-quality theories that can be used to guide descriptive, causal and predictive inference.
4 videos3 readings1 assignment1 discussion prompt
Establishing causality is frequently the primary motivation for research. Policymakers often want to understand how the implementation of a new program or other policy tool will affect an outcome of interest. Will smaller class sizes increase student learning? Will the implementation of stricter background checks for gun buyers reduce gun violence? Biomedical researchers often want to understand whether a new medicine will improve a disease outcome. Will taking a drug improve life expectancy, or even cure the disease under study? To answer these and similar questions, analysts must develop research designs that are appropriate for causal inference. Estimating a causal effect is challenging, yet it is essential to understand the impacts of a policy, medicine or any other kind of intervention.
4 videos3 readings4 assignments
Over the next four lessons we'll begin to make sense of raw data. Staring at raw data, such as a spreadsheet, does not reveal much of anything about the key takeaway points. Consider a variable such as a survey question that asks about the level of discrimination in the U.S. (where the answer choices are "a lot," "some," "only a little," "none at all," and "don't know"). Reading the raw data does not tell you about the average respondent or the distribution of responses among the possible answer choices. To better understand the shape of the distribution, we can calculate measures of central tendency, measures of spread and characterize the data's dispersion. These summary statistics allow a researcher to draw some simple yet powerful initial conclusions about what the data tell us in a real-world sense.
4 videos5 readings4 assignments
Edward Tufte, a world-renowned expert of data visualization, once said, "There is no such thing as information overload. There is only bad design." When communicating the results of an analysis, and particularly when trying to persuade an audience, a picture is truly worth a thousand words. A well-designed graph can leverage either a small or large amount of data to make a convincing argument. Data visualizations highlight specific points about the underlying information and enable the viewer to draw insights that are nearly invisible when staring at the numbers alone. In short, to be a good at communicating with data, you must become skilled at visualizing data.
3 videos4 readings4 assignments
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
Wesleyan University
Course
SkillUp EdTech
Course
University of Amsterdam
Course
Fundação Instituto de Administração
Specialization
171 reviews
70.17%
23.39%
4.09%
1.16%
1.16%
Showing 3 of 171
Reviewed on Jul 29, 2023
it was very helpful as it provided me with general idea on how to analyze and interpret data
Reviewed on Jun 5, 2022
Nice and well paced review of statistical basics.
Reviewed on Jul 9, 2023
Very nice and clearly explained the topics with practical examples.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.