What Does MVP Stand For? It’s Not What You Think.
October 7, 2024
Article
This course is part of IBM Machine Learning Professional Certificate
Instructors: Mark J Grover
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
34,672 already enrolled
Included with
(234 reviews)
(234 reviews)
Add to your LinkedIn profile
24 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This course introduces you to two of the most sought-after disciplines in Machine Learning: Deep Learning and Reinforcement Learning. Deep Learning is a subset of Machine Learning that has applications in both Supervised and Unsupervised Learning, and is frequently used to power most of the AI applications that we use on a daily basis. First you will learn about the theory behind Neural Networks, which are the basis of Deep Learning, as well as several modern architectures of Deep Learning. Once you have developed a few Deep Learning models, the course will focus on Reinforcement Learning, a type of Machine Learning that has caught up more attention recently. Although currently Reinforcement Learning has only a few practical applications, it is a promising area of research in AI that might become relevant in the near future.
After this course, if you have followed the courses of the IBM Specialization in order, you will have considerable practice and a solid understanding in the main types of Machine Learning which are: Supervised Learning, Unsupervised Learning, Deep Learning, and Reinforcement Learning. By the end of this course you should be able to: Explain the kinds of problems suitable for Unsupervised Learning approaches Explain the curse of dimensionality, and how it makes clustering difficult with many features Describe and use common clustering and dimensionality-reduction algorithms Try clustering points where appropriate, compare the performance of per-cluster models Understand metrics relevant for characterizing clusters Who should take this course? This course targets aspiring data scientists interested in acquiring hands-on experience with Deep Learning and Reinforcement Learning. What skills should you have? To make the most out of this course, you should have familiarity with programming on a Python development environment, as well as fundamental understanding of Data Cleaning, Exploratory Data Analysis, Unsupervised Learning, Supervised Learning, Calculus, Linear Algebra, Probability, and Statistics.
This module introduces Deep Learning, Neural Networks, and their applications. You will go through the theoretical background and characteristics that they share with other machine learning algorithms, as well as characteristics that make them stand out as great modeling techniques for specific scenarios. You will also gain some hands-on practice on Neural Networks and key concepts that help these algorithms converge to robust solutions.
16 videos1 reading3 assignments3 app items
In this module, you will learn about the maths behind the popular Back Propagation algorithm used to optimize neural networks. In the Back Propagation notebook, you will also see and understand the use of activation functions. The main purpose of most activation function is to introduce non-linearity in the network so it would be capable of learning more complex patterns. Last, but not least, you will learn to use functions and APIs from the Keras library to solve tasks that involve neural networks, and these tasks start with loading images.
13 videos1 reading3 assignments4 app items
You can leverage several options to prioritize the training time or the accuracy of your neural network and deep learning models. In this module you learn about key concepts that intervene during model training, including optimizers and data shuffling. You will also gain hands-on practice using Keras, one of the go-to libraries for deep learning.
6 videos1 reading2 assignments2 app items1 plugin
In this module you become familiar with convolutional neural networks, also known as space invariant artificial neural networks, a type of deep neural networks, frequently used in image AI applications. There are several CNN architectures, you will learn some of the most common ones to add to your toolkit of Deep Learning Techniques.
9 videos1 reading2 assignments6 app items
In this module, you will understand what is transfer learning and how it works. You will implement transfer learning in 5 general steps using a variety of popular pre-trained CNN architectures, such as VGG-16 and ResNet-50. You will study the differences among those CNN architectures and see how the invention of each solves the problem of its predecessors. Last, but not least, as we are moving to working with deeper neural networks, you will also be equipped with regularization techniques to prevent overfitting of complex models and networks.
8 videos1 reading4 assignments4 app items1 plugin
In this module you become familiar with Recursive Neural Networks (RNNs) and Long-Short Term Memory Networks (LSTM), a type of RNN considered the breakthrough for speech to text recongintion. RNNs are frequently used in most AI applications today, and can also be used for supervised learning.
9 videos1 reading3 assignments5 app items
In this module you become familiar with Autoencoders, an useful application of Deep Learning for Unsupervised Learning. Autoencoders are a neural network architecture that forces the learning of a lower dimensional representation of data, commonly images. In this module you will learn some Deep learning-based techniques for data representation, how autoencoders work, and to describe the use of trained autoencoders for image applications
7 videos1 reading2 assignments2 app items1 plugin
In this module, you will learn about two types of generative models, which are Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). We will look at the theory behind each model and then implement them in Keras for generating artificial images. The goal is usually to generate images that are as realistic as possible. In the last lesson of this module, we will touch on additional topics in deep learning, namely using Keras in a GPU environment for speeding up model training.
7 videos1 reading3 assignments4 app items
In this module you become familiar with other novel applications of Neural Networks. You will learn about Generative Adversarial Networks, frequently referred to as GANs, which are an application of Neural Networks to generate new data. Finally, you learn about Reinforcement Learning, one of the big promises for A.I., based on training algorithms by using rewards, instead of using a method to minimize error, which is what we have been using throughout the course.
5 videos2 readings2 assignments1 peer review1 app item
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
At IBM, we know how rapidly tech evolves and recognize the crucial need for businesses and professionals to build job-ready, hands-on skills quickly. As a market-leading tech innovator, we’re committed to helping you thrive in this dynamic landscape. Through IBM Skills Network, our expertly designed training programs in AI, software development, cybersecurity, data science, business management, and more, provide the essential skills you need to secure your first job, advance your career, or drive business success. Whether you’re upskilling yourself or your team, our courses, Specializations, and Professional Certificates build the technical expertise that ensures you, and your organization, excel in a competitive world.
University of Colorado Boulder
Build toward a degree
Course
Course
Course
Course
234 reviews
76.06%
12.39%
5.98%
1.70%
3.84%
Showing 3 of 234
Reviewed on Apr 20, 2021
The concepts were clearly explained in lectures. The assignments were very helpful to gain a practical insight of the skills learned in the course.
Reviewed on Mar 6, 2023
Excellent course and beautiful eye opener for me! Five out of Five Stars!
Reviewed on Jan 30, 2022
The core concepts of Deep Learning are explained well in this course.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Certificate, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.