Computing applications involving large amounts of data – the domain of data science – impact the lives of most people in the U.S. and the world. These impacts include recommendations made to us by internet-based systems, information that is available about us online, techniques that are used for security and surveillance, data that is used in health care, and many more. In many cases, they are affected by techniques in artificial intelligence and machine learning.
Ethical Issues in Data Science
This course is part of Vital Skills for Data Science Specialization
Instructor: Bobby Schnabel
3,559 already enrolled
Included with
(38 reviews)
Recommended experience
What you'll learn
Learners will be able to Identify and manage ethical situations that may arise in their careers.
Learnerrs will be able to apply ethical frameworks to help them analyze ethical challenges.
Learners will be familiar with key applications of data science that are commonly linked to ethical issues.
Skills you'll gain
Details to know
Add to your LinkedIn profile
4 quizzes
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 5 modules in this course
This module begins with an introduction to the course including motivation for the topic, the course goals, what topics the course will cover, and what is expected of the students. It then reviews the three ethical frameworks that are most commonly applied to ethical discussions in data science and computing: Kantianism/deontology, virtue ethics, and utilitarianism. Case studies are used to illustrate the application and properties of these frameworks.
What's included
5 videos6 readings1 quiz3 discussion prompts
This module begins with some background about the Internet, which is the foundation for most of the topics that we study in this course. It then discusses the two most basic ethical issues in using the internet, privacy and security, in the context of data science. It goes through a number of real case studies and examples for each to illustrate the diversity of issues.
What's included
5 videos2 readings1 quiz1 peer review2 discussion prompts
This module provides insight into the ethical issues in the data science profession and workplace (as opposed to technical topics in data science). It starts with discussion of two highly relevant codes of professional ethics, from professional societies in statistics and in computing. It then looks at a variety of recent workplace ethics issues in tech companies. A key part of this module is interviewing a data science professional about ethical issues they have encountered in their career.
What's included
4 videos2 readings1 quiz1 peer review1 discussion prompt
Algorithmic bias may be the topic that people associate most with ethical issues in data science. This module begins by providing some general background on algorithmic bias and considering varying views on the pros and cons of algorithmic vs. human decision making. It then reviews an illustrative set of examples of algorithmic bias related to gender and race, which is a particularly important class of instances of algorithmic bias. The final part of the module discusses what is perhaps the single most prominent and discussed instance of algorithmic decision making and bias, facial recognition.
What's included
6 videos3 readings1 quiz1 peer review1 discussion prompt
Data science is applied to a wide variety of important application areas, each with their own ethical issues. This module focuses on an application area that is both particularly important and leads to a rich set of ethical issues: medical applications. This includes looking at current issues involved with health databases and the uses of artificial intelligence in healthcare, and more futuristic issues, gene editing and neurological interventions. The module concludes with a crucial topic that every data science profession should consider: the implications of the fields of data science and computing on the future of human work.
What's included
6 videos3 readings1 peer review3 discussion prompts
Instructor
Offered by
Recommended if you're interested in Data Analysis
University of Michigan
University of Colorado Boulder
University of Colorado Boulder
Build toward a degree
This course is part of the following degree program(s) offered by University of Colorado Boulder. If you are admitted and enroll, your completed coursework may count toward your degree learning and your progress can transfer with you.¹
Why people choose Coursera for their career
Learner reviews
38 reviews
- 5 stars
86.84%
- 4 stars
5.26%
- 3 stars
2.63%
- 2 stars
2.63%
- 1 star
2.63%
Showing 3 of 38
Reviewed on Sep 17, 2022
This is an awesome general overview on the ethical issues we are likely to run into as data scientits and researchers.
Reviewed on Jul 11, 2022
The only reason to not give 5 stars is the need for an audit option where i can learn the concepts without needing to turn in assignments - i'm not looking for a grade. But the course is awesome!
Reviewed on Nov 15, 2021
A course full of valuable information and beautiful skills Thank you so much I hope to be with you in other courses
New to Data Analysis? Start here.
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.