A Beginner’s Guide for Learning How to Code
April 1, 2024
Article · 9 min read
This course is part of Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs Specialization
Instructor: Whizlabs Instructor
Included with
Recommended experience
Intermediate level
A basic understanding of Generative AI, LLMs, AI/ML concepts, deep learning frameworks (TensorFlow/PyTorch), and Python is recommended.
Recommended experience
Intermediate level
A basic understanding of Generative AI, LLMs, AI/ML concepts, deep learning frameworks (TensorFlow/PyTorch), and Python is recommended.
Understand the fundamentals of AI, ML, and Deep Learning, and their key differences.
Implement supervised learning techniques like classification and regression.
Apply clustering methods and time series analysis using ARIMA.
Leverage NVIDIA RAPIDS for GPU-accelerated ML workflows.
Add to your LinkedIn profile
February 2025
6 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
NVIDIA: Fundamentals of Machine Learning Course is a foundational course designed to introduce learners to key machine learning concepts and techniques. This course is the first part of the Exam Prep (NCA-GENL): NVIDIA-Certified Generative AI LLMs Associate specialization.
The course covers fundamental machine learning principles, including supervised and unsupervised learning, model training, evaluation metrics, and optimization techniques. It also provides insights into data preprocessing, feature engineering, and common machine learning algorithms. This course is structured into three modules, each containing Lessons and Video Lectures. Learners will engage with approximately 5:00-6:30 hours of video content, covering both theoretical concepts and hands-on practice. Each module is supplemented with quizzes to assess learners' understanding and reinforce key concepts. Course Modules: Module 1: ML Basics and Data Preprocessing Module 2: Supervised Learning & Model Evaluation Module 3: Unsupervised Learning, Advanced Techniques & GPU Acceleration By the end of this course, a learner will be able to: - Understand the fundamentals of AI, ML, and Deep Learning, and their key differences. - Implement supervised learning techniques like classification and regression. - Apply clustering methods and time series analysis using ARIMA. - Leverage NVIDIA RAPIDS for GPU-accelerated ML workflows. This course is intended for individuals looking to enhance their machine-learning skills, particularly those interested in GPU-accelerated AI workflows and NVIDIA technologies.
Welcome to Week 1 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will explore ML Basics and Data Preprocessing, starting with an introduction to the course and best practices for exam success. We will define machine learning and set expectations for the Fundamentals of Machine Learning course. As we progress, we will differentiate between AI, Deep Learning, and Machine Learning and examine the types of machine learning. We will also cover the key steps involved in the machine-learning process. By the end of the week, we will dive into data preprocessing essentials, understanding its significance in machine learning workflows. A demo session on data preprocessing will provide hands-on insights into preparing data for model training.
9 videos2 readings2 assignments1 discussion prompt
Welcome to Week 2 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will explore the fundamentals of Supervised Machine Learning and Modal Evaluation, covering both Classification and Regression techniques. We will begin by understanding the principles of classification and regression models and their applications. As we progress, we will explore the process of model selection, training, and evaluation, followed by an in-depth discussion on evaluating classification models using the Confusion Matrix. Additionally, we will examine key evaluation metrics for both classification and regression models through theoretical explanations and hands-on demonstrations.
8 videos1 reading2 assignments
Welcome to Week 3 of the NVIDIA: Fundamentals of Machine Learning course. This week, we will cover Unsupervised Learning, Advanced Techniques & GPU Acceleration, starting with unsupervised learning techniques like KMeans, hierarchical, and density-based clustering, along with a hands-on demo. We'll also explore association rule mining and NVIDIA RAPIDS for GPU-accelerated workflows, including a demo. Additionally, we'll learn about cross-validation techniques (GridSearch and Randomized Search) with a practical demo and conclude with the ARIMA model for time series analysis, along with a hands-on demo.
11 videos3 readings2 assignments
Providing certification training since the year 2000, Whizlabs is the pioneer among online training providers across the globe. We are dedicated to helping you learn the skills you need to transform your career in the IT industry. We provide certification training in the form of Video Courses, Practice Tests, Hands-on Labs and Sandbox in various disciplines such as Cloud Computing, DevOps, Cyber Security, Java, Big Data, Snowflake, CompTIA, Agile, Linux, CCNA, Blockchain, and much more.
Course
Course
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.