Johns Hopkins University
Data Science Decisions in Time: Information Theory & Games
Johns Hopkins University

Data Science Decisions in Time: Information Theory & Games

Thomas Woolf

Instructor: Thomas Woolf

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

24 hours to complete
3 weeks at 8 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

24 hours to complete
3 weeks at 8 hours a week
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

August 2024

Assessments

11 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Data Science Decisions in Time Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 6 modules in this course

How should a control be adjusted to best achieve a desired outcome? We introduce the SFPark problem, a real parking management approach being used in SF. The question that we want to understand, via sequential methods and games, is how best to set the prices for spaces, dynamically during the day, to encourage a particular (say 15%) free space availability. The game is between the consumers (looking for parking) and the city (trying to optimize space, reducing those cruising for spaces and encouraging those coming for a meal or for shopping to have a parking space). This is a sequential decision problem that can also be described as a game.

What's included

3 videos1 reading2 assignments

Decision making as a shared endeavor rapidly extends game theory into many real world situations and helps us to see how these ideas can be applied to problems that impact all of us. We start with a discussion about water resources and their allocation. This then is tied back to how we think about the classic problem of the prisoner's dilemma.

What's included

4 videos1 reading2 assignments

For many real-world settings we are not fully cooperative and may even be playing a game with antagonistic opponents. Understanding an optimal strategy for these settings means paying attention to the moves possible from the opponent and what they mean for your own optimal actions. We start with considerations of cybersecurity and then move into the classic Centipede Game.

What's included

3 videos1 reading2 assignments

The game of Diplomacy is a challenge due to the many combinatorial options that can flow from a set of decisions. The game can be quite complex to play and also provides an excellent training ground for computer algorithms. In this part of the course we look at the general nature of complex social interactions and the models for game play that can be used to define optimal policies.

What's included

3 videos1 reading2 assignments

In this fifth module we aim to generalize from our study of games as objects in their own right to algorithms and informational settings where the ideas from game theory can inspire new insights and ways to see into large and diverse datasets. We start with a common clinical problem: how to classify a radiological image. As we think about the challenges of this setting, including extracting and seeing the relevant features, we set the frame for our goals with this fifth week. In particular, how can we find the most important, and ideally invariant, features that best describe our problem and that can be used for making decisions.

What's included

3 videos1 reading2 assignments

What's included

1 assignment

Instructor

Thomas Woolf
Johns Hopkins University
4 Courses444 learners

Offered by

Recommended if you're interested in Probability and Statistics

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

New to Probability and Statistics? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions