Machine learning and data science are the most popular topics of research nowadays. They are applied in all the areas of engineering and sciences. Various machine learning tools provide a data-driven solution to various real-life problems. Basic knowledge of linear algebra is necessary to develop new algorithms for machine learning and data science. In this course, you will learn about the mathematical concepts related to linear algebra, which include vector spaces, subspaces, linear span, basis, and dimension. It also covers linear transformation, rank and nullity of a linear transformation, eigenvalues, eigenvectors, and diagonalization of matrices. The concepts of singular value decomposition, inner product space, and norm of vectors and matrices further enrich the course contents.
Give your career the gift of Coursera Plus with $160 off, billed annually. Save today.
What you'll learn
Describe the vector spaces, vector subspaces, basis, and dimension of a vector space.
Explain the linear transformations defined on vector spaces and eigenvalues and eigenvector of a matrix, symmetric and skew-symmetric matrices.
Explain diagonalizable matrices, their applications and the inner product, and the norm of vectors and matrices.
Skills you'll gain
Details to know
Add to your LinkedIn profile
9 assignments
See how employees at top companies are mastering in-demand skills
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 6 modules in this course
This module provides an overview of the course content and structure. In this module, you will learn about the different course elements. In this module, you will get acquainted with your instructor and get an opportunity to introduce yourself and interact with your peers.
What's included
1 reading1 discussion prompt
In this module, you will learn about vector space and its subspace. Further, you will learn about the set of linearly dependent and independent vectors. You will also gain insight into the linear combination and linear span of a set of vectors.
What's included
6 videos2 readings2 assignments
In this module, you will learn about the basis and dimension of a vector space. You will learn about the concept of linear transformations defined on real vector spaces. Further, you will understand that there is a matrix associated with each linear transformation for the bases. Finally, you will get an insight into the eigenvalues of a square matrix.
What's included
6 videos5 readings2 assignments
In this module, you will learn about the eigenvectors corresponding to the eigenvalues of a matrix. You will then learn about the properties of special matrices (symmetric and skew-symmetric). Finally, you will learn about the concept of diagonalization of a matrix (eigen decomposition of a matrix) with its applications.
What's included
6 videos3 readings2 assignments
In this module, you will learn about the spectral value decomposition and singular value decomposition of a matrix with some applications. Further, you will learn about the inner product space and norms of vectors and matrices with two useful identities—Cauchy-Schwarz inequality and Polarization identity—for machine learning algorithms.
What's included
6 videos4 readings2 assignments
In this module, you are provided with your term-end project, instructions to complete the project, and the criteria for how your instructor will grade your submission.
What's included
3 readings1 assignment1 ungraded lab
Instructor
Offered by
Recommended if you're interested in Machine Learning
Vanderbilt University
Johns Hopkins University
University at Buffalo
Why people choose Coursera for their career
New to Machine Learning? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.