This course continues our data structures and algorithms specialization by focussing on the use of linear and integer programming formulations for solving algorithmic problems that seek optimal solutions to problems arising from domains such as resource allocation, scheduling, task assignment, and variants of the traveling salesperson problem. Next, we will study algorithms for NP-hard problems whose solutions are guaranteed to be within some approximation factor of the best possible solutions. Such algorithms are often quite efficient and provide useful bounds on the optimal solutions. The learning will be supported by instructor provided notes, readings from textbooks and assignments. Assignments will include conceptual multiple-choice questions as well as problem solving assignments that will involve programming and testing algorithms.
Approximation Algorithms and Linear Programming
This course is part of Foundations of Data Structures and Algorithms Specialization
Instructor: Sriram Sankaranarayanan
10,030 already enrolled
Included with
(35 reviews)
Recommended experience
What you'll learn
Formulate linear and integer programming problems for solving commonly encountered optimization problems.
Develop a basic understanding of how linear and integer programming problems are solved.
Understand how approximation algorithms compute solutions that are guaranteed to be within some constant factor of the optimal solution
Skills you'll gain
Details to know
Add to your LinkedIn profile
18 quizzes, 1 assignment
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 4 modules in this course
This module introduces the basics of linear programs and shows how some algorithm problems (such as the network flow problem) can be posed as a linear program. We will provide hands-on tutorials on how to pose and solve a linear programming problem in Python. Finally, we will provide a brief overview of linear programming algorithms including the famous Simplex algorithm for solving linear programs. The problem set will guide you towards posing and solving some interesting problems such as a financial portfolio problem and the optimal transportation problem as linear programs.
What's included
7 videos2 readings5 quizzes1 programming assignment4 ungraded labs
This module will cover integer linear programming and its use in solving NP-hard (combinatorial optimization) problems. We will cover some examples of what integer linear programming is by formulating problems such as Knapsack, Vertex Cover and Graph Coloring. Next, we will study the concept of integrality gap and look at the special case of integrality gap for vertex cover problems. We will conclude with a tutorial on formulating and solving integer linear programs using the python library Pulp.
What's included
6 videos4 quizzes1 assignment1 programming assignment4 ungraded labs
We will introduce approximation algorithms for solving NP-hard problems. These algorithms are fast (often greedy algorithms) that may not produce an optimal solution but guarantees that its solution is not "too far away" from the best possible. We will present some of these algorithms starting from a basic introduction to the concepts involved followed by a series of approximation algorithms for scheduling problems, vertex cover problem and the maximum satisfiability problem.
What's included
5 videos4 quizzes1 programming assignment3 ungraded labs
We will present the travelling salesperson problem (TSP): a very important and widely applicable combinatorial optimization problem, its NP-hardness and the hardness of approximating a general TSP with a constant factor. We present integer linear programming formulation and a simple yet elegant dynamic programming algorithm. We will present a 3/2 factor approximation algorithm by Christofides and discuss some heuristic approaches for solving TSPs. We will conclude by presenting approximation schemes for the knapsack problem.
What's included
11 videos5 quizzes1 programming assignment3 ungraded labs
Instructor
Offered by
Recommended if you're interested in Algorithms
École normale supérieure
University of Colorado Boulder
EIT Digital
École normale supérieure
Build toward a degree
This course is part of the following degree program(s) offered by University of Colorado Boulder. If you are admitted and enroll, your completed coursework may count toward your degree learning and your progress can transfer with you.¹
Why people choose Coursera for their career
Learner reviews
Showing 3 of 35
35 reviews
- 5 stars
91.42%
- 4 stars
5.71%
- 3 stars
2.85%
- 2 stars
0%
- 1 star
0%
Reviewed on Jan 16, 2024
New to Algorithms? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.