Welcome to this project-based course on Logistic with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery, including gradient descent, cost function, and logistic regression, of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to build a logistic regression model using Python and NumPy, conduct basic exploratory data analysis, and implement gradient descent from scratch. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory.
Give your career the gift of Coursera Plus with $160 off, billed annually. Save today.
Logistic Regression with NumPy and Python
Instructor: Snehan Kekre
12,665 already enrolled
Included with
(390 reviews)
Recommended experience
What you'll learn
Implement the gradient descent algorithm from scratch
Perform logistic regression with NumPy and Python
Create data visualizations with Matplotlib and Seaborn
Skills you'll practice
Details to know
Add to your LinkedIn profile
Only available on desktop
See how employees at top companies are mastering in-demand skills
Learn, practice, and apply job-ready skills in less than 2 hours
- Receive training from industry experts
- Gain hands-on experience solving real-world job tasks
- Build confidence using the latest tools and technologies
About this Guided Project
Learn step-by-step
In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:
Introduction and Project Overview
Load the Data and Import Libraries
Visualize the Data
Define the Logistic Sigmoid Function 𝜎(𝑧)
Compute the Cost Function 𝐽(𝜃) and Gradient
Cost and Gradient at Initialization
Implement Gradient Descent
Plotting the Convergence of 𝐽(𝜃)
Plotting the Decision Boundary
Predictions Using the Optimized 𝜃 Values
Recommended experience
Prior programming experience in Python and machine learning theory is recommended.
7 project images
Instructor
Offered by
How you'll learn
Skill-based, hands-on learning
Practice new skills by completing job-related tasks.
Expert guidance
Follow along with pre-recorded videos from experts using a unique side-by-side interface.
No downloads or installation required
Access the tools and resources you need in a pre-configured cloud workspace.
Available only on desktop
This Guided Project is designed for laptops or desktop computers with a reliable Internet connection, not mobile devices.
Why people choose Coursera for their career
Learner reviews
Showing 3 of 390
390 reviews
- 5 stars
64.87%
- 4 stars
27.17%
- 3 stars
5.12%
- 2 stars
0.76%
- 1 star
2.05%
You might also like
DeepLearning.AI
Arizona State University
New to Machine Learning? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.
Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.
Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.