What Does MVP Stand For? It’s Not What You Think.
October 7, 2024
Article
Instructor: Dr. Nick Feamster
3,409 already enrolled
Included with
(18 reviews)
Recommended experience
Intermediate level
Basic Python and Linear Algebra
(18 reviews)
Recommended experience
Intermediate level
Basic Python and Linear Algebra
Add to your LinkedIn profile
20 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This course gives you a comprehensive introduction to both the theory and practice of machine learning. You will learn to use Python along with industry-standard libraries and tools, including Pandas, Scikit-learn, and Tensorflow, to ingest, explore, and prepare data for modeling and then train and evaluate models using a wide variety of techniques. Those techniques include linear regression with ordinary least squares, logistic regression, support vector machines, decision trees and ensembles, clustering, principal component analysis, hidden Markov models, and deep learning.
A key feature of this course is that you not only learn how to apply these techniques, you also learn the conceptual basis underlying them so that you understand how they work, why you are doing what you are doing, and what your results mean. The course also features real-world datasets, drawn primarily from the realm of public policy. It is based on an introductory machine learning course offered to graduate students at the University of Chicago and will serve as a strong foundation for deeper and more specialized study.
In this module you will be introduced to the machine-learning pipeline and learn about the initial work on your data that you need to do prior to modeling. You will learn about how to ingest data using Pandas, a standard Python library for data exploration and preparation. Next, we turn to the first approach to modeling that we explore in this class, linear regression with ordinary least squares.
6 videos2 assignments3 ungraded labs
In this module, you continue the work that we began in the last with linear regressions. You will learn more about how to evaluate such models and how to select the important features and exclude the ones that are not statistically significant. You will also learn about maximum likelihood estimation, a probabilistic approach to estimating your models.
4 videos2 assignments1 programming assignment2 ungraded labs
This module introduces you to basis functions and polynomial expansions in particular, which will allow you to use the same linear regression techniques that we have been studying so far to model non-linear relationships. Then, we learn about the bias-variance tradeoff, a key relationship in machine learning. Methods like polynomial expansion may help you train models that capture the relationship in your training data quite well, but those same models may perform badly on new data. You learn about different regularization methods that can help balance this tradeoff and create models that avoid overfitting.
4 videos2 assignments2 ungraded labs
In this module, you first learn more about evaluating and tuning your models. We look at cross validation techniques that will help you get more accurate measurements of your model's performance, and then you see how to use them along with pipelines and GridSearch to tune your models. Finally, we look a the theory and practice of our first technique for classification, logistic regression.
4 videos2 assignments2 ungraded labs
You will learn about two more classification techniques in this module: first, Support Vector Machines (SVMs) and then Naive Bayes, a quick and highly interpretable approach that uses Bayes' theorem.
4 videos3 assignments3 ungraded labs
In this module, you will first learn about classification using decision trees. We will see how to create models that use individual decision trees, and then ensemble models, which use many trees, such as bagging, boosting, and random forests. Then, we learn more about how to evaluate the performance of classifiers.
5 videos3 assignments3 ungraded labs
To this point, we have been focusing on supervised learning and training models that estimate a target variable that you have specified. In this module, we take our first look at unsupervised learning, a domain of machine learning that uses techniques to find patterns and relationships in data without you ever defining a target. In particular, we look at a variety of clustering techniques, beginning with k-means and hierarchical clustering, and then distribution and density-based clustering.
4 videos2 assignments2 ungraded labs
You will look at two new techniques in this module. The first is Principal Component Analysis, a powerful dimensionality reduction technique that you can use to project high-dimensional features into lower-dimensional spaces. This can be used for a range of purposes, including feature selection, preventing overfitting, visualizing in two- or three-dimensional spaces higher dimensional data, and more. Then, you will study hidden Markov models, a technique that you can use to model sequences of states, where each state depends on the one that came before.
4 videos2 assignments2 ungraded labs
This module introduces you to one of the most hyped topics in machine learning, deep learning with feed-forward neural networks and convolutional neural networks. You will learn about how these techniques work and where they might be very effective--or very ineffective. We explore how to design, implement, and evaluate such models using Python and Keras.
4 videos2 assignments2 ungraded labs
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
One of the world's premier academic and research institutions, the University of Chicago has driven new ways of thinking since our 1890 founding. Today, UChicago is an intellectual destination that draws inspired scholars to our Hyde Park and international campuses, keeping UChicago at the nexus of ideas that challenge and change the world.
Duke University
Course
Alberta Machine Intelligence Institute
Course
University of Glasgow
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.