9 Machine Learning Books for Beginners: a 2025 Guide
December 19, 2024
Article · 7 min read
Cultivate your career with expert-led programs, job-ready certificates, and 10,000 ways to grow. All for $25/month, billed annually. Save now
Instructors: Aije Egwaikhide
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
24,327 already enrolled
Included with
(265 reviews)
(265 reviews)
Compare and contrast artificial intelligence, machine learning, and deep learning
Explain the machine learning models development lifecycle
Differentiate between supervised and unsupervised machine learning
Evaluate classification models using metrics such as accuracy, confusion matrices, precision, and recall
Add to your LinkedIn profile
2 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This three-module course introduces machine learning and data science for everyone with a foundational understanding of machine learning models. You’ll learn about the history of machine learning, applications of machine learning, the machine learning model lifecycle, and tools for machine learning. You’ll also learn about supervised versus unsupervised learning, classification, regression, evaluating machine learning models, and more. Our labs give you hands-on experience with these machine learning and data science concepts. You will develop concrete machine learning skills as well as create a final project demonstrating your proficiency.
After completing this program, you’ll be able to realize the potential of machine learning algorithms and artificial intelligence in different business scenarios. You’ll be able to identify when to use machine learning to explain certain behaviors and when to use it to predict future outcomes. You’ll also learn how to evaluate your machine learning models and to incorporate best practices. This Course Is Part of Multiple Programs You can also leverage the learning from the program to complete the remaining two courses of the six-course IBM Machine Learning Professional Certificate and power a new career in the field of machine learning.
Welcome to the world of machine learning. Machine learning is a branch of artificial intelligence (AI) and computer science that focuses on the use of data and algorithms to imitate the way that humans learn, gradually improving its accuracy. Machine learning is an important component in the growing field of data science. Using statistical methods, algorithms are trained to make classifications or predictions, uncovering key insights within data mining projects. These insights subsequently drive decision-making within applications and businesses, ideally impacting key growth metrics. As big data continues to expand and grow, the market demand for data scientists will increase, requiring them to assist in the identification of the most relevant business questions and subsequently the data to answer them. In this module, you will explore some of the fundamental concepts behind machine learning. You will learn to differentiate between AI, machine, and deep learning. Further, you will also explore the importance and requirements of each process in the lifecycle of a machine learning product.
6 videos2 readings1 assignment2 plugins
Machine learning is a hot topic, and everyone is trying to understand what it is about. With the amount of information that is out there about machine learning, you can get quickly overwhelmed. In this module, you will explore the most important topics in machine learning that you need to know. You will dive into supervised and unsupervised learning, classification, deep and reinforcement learning, as well as regression. Further, you will learn how to evaluate a machine learning model.
8 videos4 readings1 assignment3 plugins
1 reading1 peer review1 app item2 plugins
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
At IBM, we know how rapidly tech evolves and recognize the crucial need for businesses and professionals to build job-ready, hands-on skills quickly. As a market-leading tech innovator, we’re committed to helping you thrive in this dynamic landscape. Through IBM Skills Network, our expertly designed training programs in AI, software development, cybersecurity, data science, business management, and more, provide the essential skills you need to secure your first job, advance your career, or drive business success. Whether you’re upskilling yourself or your team, our courses, Specializations, and Professional Certificates build the technical expertise that ensures you, and your organization, excel in a competitive world.
Alberta Machine Intelligence Institute
Course
Duke University
Course
Specialization
Fractal Analytics
Course
265 reviews
66.79%
24.52%
5.28%
1.50%
1.88%
Showing 3 of 265
Reviewed on Sep 23, 2024
Excellent. Teaching techniques are unique. Keep it UP....
Reviewed on Jan 14, 2023
Thanks to the Authors, I learnt a lot from this course
Reviewed on Jun 22, 2023
An essential introduction to the world of Machine Learning with a very insightful Honors project at the end!
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Financial aid available,
New to Coursera?
Having trouble logging in? Learner help center
This site is protected by reCAPTCHA Enterprise and the Google Privacy Policy and Terms of Service apply.