What Is Programming? And How To Get Started
January 28, 2025
Article
This course is part of AI Product Management Specialization
Instructor: Jon Reifschneider
19,006 already enrolled
Included with
(210 reviews)
Recommended experience
Beginner level
No prior experience in machine learning or programming required.
(210 reviews)
Recommended experience
Beginner level
No prior experience in machine learning or programming required.
Add to your LinkedIn profile
5 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This second course of the AI Product Management Specialization by Duke University's Pratt School of Engineering focuses on the practical aspects of managing machine learning projects. The course walks through the keys steps of a ML project from how to identify good opportunities for ML through data collection, model building, deployment, and monitoring and maintenance of production systems. Participants will learn about the data science process and how to apply the process to organize ML efforts, as well as the key considerations and decisions in designing ML systems.
At the conclusion of this course, you should be able to: 1) Identify opportunities to apply ML to solve problems for users 2) Apply the data science process to organize ML projects 3) Evaluate the key technology decisions to make in ML system design 4) Lead ML projects from ideation through production using best practices
In this module we will discuss how to identify problems worth solving, how to determine whether ML is a good fit as part of the solution, and how to validate solution concepts. We will also learn why heuristics are useful in modeling projects and the advantages and disadvantages of ML relative to heuristics.
9 videos4 readings1 assignment2 discussion prompts
In this module we will focus on the CRISP-DM data science process and how it can be used to organize ML projects. We will begin by understanding what is unique about ML project relative to normal software projects, and then discuss approaches to manage the inherent risks of ML projects. We will also walk through the key roles on a ML project team and how to organize work.
8 videos2 readings1 assignment1 discussion prompt
In this module we will explore the key data-related issues that arise in ML projects. Data is the foundation of successful machine learning, and gathering data of sufficient quantity and quality with the right set of attributes is the key to a successful project. We will discuss the key considerations in sourcing data, cleaning data, and developing and selecting a feature set to use in modeling. The module will conclude with a discussion on best practices to ensure reproducibility of your data pipeline.
8 videos2 readings1 assignment1 discussion prompt
In this module we will discuss the key decisions to make in designing ML systems, such as cloud vs. edge and online vs. batch, and compare the benefits of each type of system. We will then discuss the primary technology decisions to make in a ML project and introduce the common tools and technologies used to build ML models.
8 videos2 readings1 assignment1 discussion prompt
The final module in the course focuses on identifying and mitigating the key issues which ML models experience once they are in production. We will discuss how to set up a robust ML system monitoring capability and define a model maintenance plan to maintain high performance of a production model. We will conclude with a discussion on the importance of versioning in ML systems to facilitate continued rapid iteration even after deployment.
8 videos2 readings1 assignment1 peer review1 discussion prompt1 plugin
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
University of Colorado Boulder
Build toward a degree
Specialization
Professional Certificate
Coursera Project Network
Course
Alberta Machine Intelligence Institute
Course
210 reviews
84.28%
10.95%
2.85%
0.95%
0.95%
Showing 3 of 210
Reviewed on Jul 10, 2024
I like this course; it is very informative. I learned a lot of useful concepts, and I reinforced much of what I knew. I recommend this course, even if is just for fun.
Reviewed on Sep 3, 2023
The peer rating for the final project is interesting, if someone who does not get what is being asked for the final project is going to rate my final project. Saw some interesting examples.
Reviewed on Jun 29, 2023
I appreciate the use cases that were shared throughout the course. It helped tremendously.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.