How to Optimize a CompTIA A+ Resume
June 24, 2024
Article
This course is part of Total Data Quality Specialization
Instructors: Brady T. West
Included with
Learn metrics for evaluating Total Data Quality.
Create a quality concept map of TDQ from a particular application or data source.
Identify relevant software and related tools for computing the various metrics.
Add to your LinkedIn profile
7 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
By the end of this second course in the Total Data Quality Specialization, learners will be able to:
1. Learn various metrics for evaluating Total Data Quality (TDQ) at each stage of the TDQ framework. 2. Create a quality concept map that tracks relevant aspects of TDQ from a particular application or data source. 3. Think through relative trade-offs between quality aspects, relative costs and practical constraints imposed by a particular project or study. 4. Identify relevant software and related tools for computing the various metrics. 5. Understand metrics that can be computed for both designed and found/organic data. 6. Apply the metrics to real data and interpret their resulting values from a TDQ perspective. This specialization as a whole aims to explore the Total Data Quality framework in depth and provide learners with more information about the detailed evaluation of total data quality that needs to happen prior to data analysis. The goal is for learners to incorporate evaluations of data quality into their process as a critical component for all projects. We sincerely hope to disseminate knowledge about total data quality to all learners, such as data scientists and quantitative analysts, who have not had sufficient training in the initial steps of the data science process that focus on data collection and evaluation of data quality. We feel that extensive knowledge of data science techniques and statistical analysis procedures will not help a quantitative research study if the data collected/gathered are not of sufficiently high quality. This specialization will focus on the essential first steps in any type of scientific investigation using data: either generating or gathering data, understanding where the data come from, evaluating the quality of the data, and taking steps to maximize the quality of the data prior to performing any kind of statistical analysis or applying data science techniques to answer research questions. Given this focus, there will be little material on the analysis of data, which is covered in myriad existing Coursera specializations. The primary focus of this specialization will be on understanding and maximizing data quality prior to analysis.
Welcome to Measuring Total Data Quality! This is the second course in the Total Data Quality Specialization. After reviewing the Course 2 syllabus and completing the course pre-survey, you’ll learn how to measure validity for designed and gathered data through a series of video lectures, examples, and readings. You’ll then take a short quiz on interpreting validity metrics. Then, you’ll complete a module on data origin, where you’ll learn about measuring data origin quality for designed and gathered data in a series of video lectures and case studies. Week 1 will conclude with a quiz on interpreting data origin quality metrics.
9 videos6 readings2 assignments
Welcome to Week 2 of Measuring Total Data Quality! We’ll begin the week by discussing how to measure processing data quality for designed and gathered data. We’ll include examples of measuring process data quality for each form of data and conclude the module with a quiz on interpreting processing metrics. In the second half of Week 2, we’ll discuss measuring data access quality for designed and gathered data through video lectures, an example, and a case study, and conclude the week with a quiz on interpreting access metrics.
8 videos2 readings2 assignments
This week, we’ll learn how to measure data source quality and data missingness. We’ll begin Week 3 with a video lecture on measuring data source quality for designed data. Then, we’ll work through an example of computing data source metrics with real data and code. We’ll then learn how to measure data source quality for gathered data and see an example of computer data source quality metrics with real data and code. You’ll then take a short quiz on interpreting data source quality metrics and move on to the Data Missingness unit. We’ll learn how to measure threats to data source quality for designed and gathered data and work through examples for each form of data. Week 3 will conclude with a quiz on interpreting data missingness metrics.
8 videos3 readings2 assignments
We’ll be wrapping up Measuring Total Data Quality this week by learning how to measure the quality of data analysis. We’ll learn how to measure the quality of data analysis for designed and gathered data and work through examples of each type of data. We recommend that you complete two readings before you complete the lecture on measuring the quality of analysis for gathered data. We will conclude the week with a quiz on examining quality metrics and interpreting output, as well as references for the Measuring Total Data Quality course and a course post-survey.
4 videos6 readings1 assignment
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.
University of Michigan
Specialization
University of Michigan
Course
University of Michigan
Course
Google Cloud
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.