What Does MVP Stand For? It’s Not What You Think.
October 7, 2024
Article
This course is part of Machine Learning Specialization
Instructors: Emily Fox
Instructor ratings
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
127,478 already enrolled
Included with
(3,733 reviews)
(3,733 reviews)
Add to your LinkedIn profile
19 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Case Studies: Analyzing Sentiment & Loan Default Prediction
In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended).
Classification is one of the most widely used techniques in machine learning, with a broad array of applications, including sentiment analysis, ad targeting, spam detection, risk assessment, medical diagnosis and image classification. The core goal of classification is to predict a category or class y from some inputs x. Through this course, you will become familiar with the fundamental models and algorithms used in classification, as well as a number of core machine learning concepts. Rather than covering all aspects of classification, you will focus on a few core techniques, which are widely used in the real-world to get state-of-the-art performance. By following our hands-on approach, you will implement your own algorithms on multiple real-world tasks, and deeply grasp the core techniques needed to be successful with these approaches in practice. This introduction to the course provides you with an overview of the topics we will cover and the background knowledge and resources we assume you have.
8 videos4 readings
Linear classifiers are amongst the most practical classification methods. For example, in our sentiment analysis case-study, a linear classifier associates a coefficient with the counts of each word in the sentence. In this module, you will become proficient in this type of representation. You will focus on a particularly useful type of linear classifier called logistic regression, which, in addition to allowing you to predict a class, provides a probability associated with the prediction. These probabilities are extremely useful, since they provide a degree of confidence in the predictions. In this module, you will also be able to construct features from categorical inputs, and to tackle classification problems with more than two class (multiclass problems). You will examine the results of these techniques on a real-world product sentiment analysis task.
18 videos2 readings2 assignments
Once familiar with linear classifiers and logistic regression, you can now dive in and write your first learning algorithm for classification. In particular, you will use gradient ascent to learn the coefficients of your classifier from data. You first will need to define the quality metric for these tasks using an approach called maximum likelihood estimation (MLE). You will also become familiar with a simple technique for selecting the step size for gradient ascent. An optional, advanced part of this module will cover the derivation of the gradient for logistic regression. You will implement your own learning algorithm for logistic regression from scratch, and use it to learn a sentiment analysis classifier.
18 videos2 readings2 assignments
As we saw in the regression course, overfitting is perhaps the most significant challenge you will face as you apply machine learning approaches in practice. This challenge can be particularly significant for logistic regression, as you will discover in this module, since we not only risk getting an overly complex decision boundary, but your classifier can also become overly confident about the probabilities it predicts. In this module, you will investigate overfitting in classification in significant detail, and obtain broad practical insights from some interesting visualizations of the classifiers' outputs. You will then add a regularization term to your optimization to mitigate overfitting. You will investigate both L2 regularization to penalize large coefficient values, and L1 regularization to obtain additional sparsity in the coefficients. Finally, you will modify your gradient ascent algorithm to learn regularized logistic regression classifiers. You will implement your own regularized logistic regression classifier from scratch, and investigate the impact of the L2 penalty on real-world sentiment analysis data.
13 videos2 readings2 assignments
Along with linear classifiers, decision trees are amongst the most widely used classification techniques in the real world. This method is extremely intuitive, simple to implement and provides interpretable predictions. In this module, you will become familiar with the core decision trees representation. You will then design a simple, recursive greedy algorithm to learn decision trees from data. Finally, you will extend this approach to deal with continuous inputs, a fundamental requirement for practical problems. In this module, you will investigate a brand new case-study in the financial sector: predicting the risk associated with a bank loan. You will implement your own decision tree learning algorithm on real loan data.
13 videos3 readings3 assignments
Out of all machine learning techniques, decision trees are amongst the most prone to overfitting. No practical implementation is possible without including approaches that mitigate this challenge. In this module, through various visualizations and investigations, you will investigate why decision trees suffer from significant overfitting problems. Using the principle of Occam's razor, you will mitigate overfitting by learning simpler trees. At first, you will design algorithms that stop the learning process before the decision trees become overly complex. In an optional segment, you will design a very practical approach that learns an overly-complex tree, and then simplifies it with pruning. Your implementation will investigate the effect of these techniques on mitigating overfitting on our real-world loan data set.
8 videos2 readings2 assignments
Real-world machine learning problems are fraught with missing data. That is, very often, some of the inputs are not observed for all data points. This challenge is very significant, happens in most cases, and needs to be addressed carefully to obtain great performance. And, this issue is rarely discussed in machine learning courses. In this module, you will tackle the missing data challenge head on. You will start with the two most basic techniques to convert a dataset with missing data into a clean dataset, namely skipping missing values and inputing missing values. In an advanced section, you will also design a modification of the decision tree learning algorithm that builds decisions about missing data right into the model. You will also explore these techniques in your real-data implementation.
6 videos1 reading1 assignment
One of the most exciting theoretical questions that have been asked about machine learning is whether simple classifiers can be combined into a highly accurate ensemble. This question lead to the developing of boosting, one of the most important and practical techniques in machine learning today. This simple approach can boost the accuracy of any classifier, and is widely used in practice, e.g., it's used by more than half of the teams who win the Kaggle machine learning competitions. In this module, you will first define the ensemble classifier, where multiple models vote on the best prediction. You will then explore a boosting algorithm called AdaBoost, which provides a great approach for boosting classifiers. Through visualizations, you will become familiar with many of the practical aspects of this techniques. You will create your very own implementation of AdaBoost, from scratch, and use it to boost the performance of your loan risk predictor on real data.
13 videos3 readings3 assignments
In many real-world settings, accuracy or error are not the best quality metrics for classification. You will explore a case-study that significantly highlights this issue: using sentiment analysis to display positive reviews on a restaurant website. Instead of accuracy, you will define two metrics: precision and recall, which are widely used in real-world applications to measure the quality of classifiers. You will explore how the probabilities output by your classifier can be used to trade-off precision with recall, and dive into this spectrum, using precision-recall curves. In your hands-on implementation, you will compute these metrics with your learned classifier on real-world sentiment analysis data.
8 videos2 readings2 assignments
With the advent of the internet, the growth of social media, and the embedding of sensors in the world, the magnitudes of data that our machine learning algorithms must handle have grown tremendously over the last decade. This effect is sometimes called "Big Data". Thus, our learning algorithms must scale to bigger and bigger datasets. In this module, you will develop a small modification of gradient ascent called stochastic gradient, which provides significant speedups in the running time of our algorithms. This simple change can drastically improve scaling, but makes the algorithm less stable and harder to use in practice. In this module, you will investigate the practical techniques needed to make stochastic gradient viable, and to thus to obtain learning algorithms that scale to huge datasets. You will also address a new kind of machine learning problem, online learning, where the data streams in over time, and we must learn the coefficients as the data arrives. This task can also be solved with stochastic gradient. You will implement your very own stochastic gradient ascent algorithm for logistic regression from scratch, and evaluate it on sentiment analysis data.
16 videos2 readings2 assignments
We asked all learners to give feedback on our instructors based on the quality of their teaching style.
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.
Coursera Project Network
Course
Illinois Tech
Build toward a degree
Course
Course
3,733 reviews
76.74%
18.61%
3.05%
0.61%
0.96%
Showing 3 of 3733
Reviewed on Jul 11, 2019
Best Machine Learning classification course by far....each aspect is explained in detail..but forum responses can be improved..Great course for machine Learning beginners... loved it.
Reviewed on Jun 23, 2017
Great course. I learned a lot about Classification theories as well as practical issues. The assignments are very informative providing complimentary understanding to the lectures.
Reviewed on Aug 6, 2016
Not as good as the previous courses in this specialization - I agree with those who have noted that this one seemed a little rushed. However, these are still the best courses I've found on Coursera.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.