NLP Career Path: Jobs in Natural Language Processing
March 19, 2025
Article
Add to your LinkedIn profile
3 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Данный курс научит вас строить модели естественных языков, звуков и других последовательных данных. Благодаря глубокому обучению последовательные алгоритмы сегодня работают в разы лучше, чем ещё два года назад. Это открывает широчайший спектр возможностей применения алгоритмов в распознавании речи, синтезе музыки, чат-ботах, машинном переводе, понимании естественных языков и во многом другом.
Вы научитесь: — строить и обучать рекуррентные нейронные сети (РНС, RNN), а также широко используемые управляемые рекуррентные блоки (УРБ, GRU) и долгую краткосрочную память (ДКП, LSTM); — применять последовательные модели в задачах по обработке естественного языка, включая синтез текста; — применять модели последовательностей к звуковой информации, например для распознавания речи или синтеза музыки. Это пятый и заключительный курс специализации «Глубокое обучение». Задача по программированию машинного перевода с глубоким обучением, содержащаяся в этом курсе, разработана deeplearning.ai совместно с партнером — Институтом глубокого обучения NVIDIA (DLI). У вас будет возможность создать проект по глубокому обучению с современным, актуальным для индустрии содержанием.
В этом разделе вы познакомитесь с принципами работы рекуррентных нейронных сетей (РНС, RNN). Этот тип сетей показывает прекрасную работу с темпоральными данными и существует в нескольких вариантах, таких как LSTM (ДКП), GRU (УРБ), и двунаправленная РНС (Bidirectional RNN), о которых вы узнаете в этом разделе.
12 videos2 readings1 assignment3 programming assignments3 ungraded labs
Сочетание обработки естественного языка и глубокого обучения — очень важное сочетание. Используя векторное представление слов и слои встраивания, вы сможете обучать рекуррентные нейронные сети, добиваясь выдающейся производительности в широком спектре областей. Примеры применения: анализ тональности текста, распознавание именованных сущностей и машинный перевод.
10 videos1 reading1 assignment2 programming assignments2 ungraded labs
Последовательные модели могут быть дополнены с использованием механизма внимания. С помощью этого алгоритма ваша модель сможет понять, на чем следует сосредоточить внимание, с учетом последовательности входных данных. На этой неделе вы также узнаете о распознавании речи и работе с аудиоданными.
11 videos4 readings1 assignment2 programming assignments2 ungraded labs
DeepLearning.AI is an education technology company that develops a global community of AI talent. DeepLearning.AI's expert-led educational experiences provide AI practitioners and non-technical professionals with the necessary tools to go all the way from foundational basics to advanced application, empowering them to build an AI-powered future.
University of Virginia
Course
University of Geneva
Course
DeepLearning.AI
Course
Yale University
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
Financial aid available,