Este curso se centrará en la optimización de Redes Neuronales Profundas, cambiando la idea de que todo el proceso es una “caja negra”.
Give your career the gift of Coursera Plus with $160 off, billed annually. Save today.
What you'll learn
Utilizar eficazmente los "trucos" comunes de la red neuronal
Comprender las mejores prácticas de la industria para crear aplicaciones de aprendizaje profundo.
Implementar y aplicar una variedad de algoritmos de optimización.
Implementar una red neuronal en TensorFlow.
Skills you'll gain
- Implementar una red neuronal en TensorFlow.
- Utilizar eficazmente los "trucos" comunes de la red neuronal incluida la inicialización la regularización de L2 los dropout y la normalización por lotes (Batch)
- Implementar y aplicar una variedad de algoritmos de optimización.
- Comprender las mejores prácticas de la industria para crear aplicaciones de aprendizaje profundo.
Details to know
Add to your LinkedIn profile
2 assignments
See how employees at top companies are mastering in-demand skills
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 3 modules in this course
Se estudiará cómo configurar su aplicación de aprendizaje automático, separando los sets de entrenamiento y testeo. Se entenderá que es la regularización en una red neuronal y cómo definir el problema para poder optimizarlo.
What's included
7 videos3 readings1 assignment1 ungraded lab
Se estudiarán los distintos métodos de optimización que se pueden utilizar en el entrenamiento de redes neuronales profundas. Además, se analizarán las ventajas de trabajar con minibatches para acelerar el proceso y los beneficios de aplicar una diminución progresiva a la tasa de aprendizaje.
What's included
5 videos1 assignment1 ungraded lab
Se aprenderán las principales técnicas y opciones en el ajuste de Hiperparámetros, la normalización por lotes y se introducirá la librería Tensorflow para la implementación de redes neuronales en Python
What's included
4 videos1 programming assignment
Offered by
Recommended if you're interested in Networking
DeepLearning.AI
Coursera Project Network
University of Washington
Google Cloud
Why people choose Coursera for their career
New to Networking? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.