What Does MVP Stand For? It’s Not What You Think.
October 7, 2024
Article
This course is part of Deep Learning: Recurrent Neural Networks with Python Specialization
Instructor: Packt - Course Instructors
Included with
Recommended experience
Advanced level
Ideal for data scientists, ML engineers, and AI enthusiasts with basic RNNs and neural networks; TensorFlow experience recommended, not required.
Recommended experience
Advanced level
Ideal for data scientists, ML engineers, and AI enthusiasts with basic RNNs and neural networks; TensorFlow experience recommended, not required.
Identify key components and functionalities of GRUs, LSTMs, and attention mechanisms.
Utilize TensorFlow to build, train, and optimize RNN models.
Develop and implement advanced RNN models to solve complex problems.
Add to your LinkedIn profile
September 2024
3 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This advanced course on Recurrent Neural Networks (RNNs) addresses key challenges like the vanishing gradient problem and provides solutions such as Gated Recurrent Units (GRUs) and Long Short Term Memory (LSTM) networks.
You'll start with an overview of improved RNN modules and delve into bidirectional RNNs and attention models, establishing a strong foundation in advanced RNN concepts. Practical implementation using TensorFlow is emphasized, with projects like text generation and stock price prediction to solidify your learning. This course ensures you gain the skills necessary to tackle real-world AI problems confidently. Through video tutorials, real-world projects, and hands-on exercises, you'll acquire the advanced knowledge and skills needed to excel in AI. By the end, you'll develop and apply advanced RNN models, understand and implement GRUs, LSTMs, and attention mechanisms, utilize TensorFlow for RNN models, and apply these models to projects like text generation and stock price prediction. Designed for data scientists, machine learning engineers, and AI enthusiasts with a solid understanding of basic RNNs and neural networks, the course combines in-depth theoretical lessons with extensive practical applications.
In this module, we will address the vanishing gradient problem in Recurrent Neural Networks and explore various solutions. You'll learn about Gated Recurrent Units (GRUs) and Long Short Term Memory (LSTM) networks, including their mathematical foundations. Additionally, we will cover bidirectional RNNs and the attention model, providing a comprehensive approach to improving RNN performance.
9 videos2 readings
In this module, we will introduce you to TensorFlow, a powerful framework for building and training deep learning models. You will learn how to implement TensorFlow in practical applications, focusing on a text classification example using RNNs. Additionally, we'll compare TensorFlow with other popular deep learning frameworks to highlight its strengths and unique features.
2 videos1 assignment
In this module, we will guide you through your first project: creating a book writer using RNNs. You will learn to map data, prepare the RNN architecture, and train the model using TensorFlow. By the end, you'll be able to generate coherent text and complete an activity to build a word-level text generator.
7 videos
In this module, we will tackle the stock price prediction project. You will learn to define the problem, create and prepare a dataset, and train an RNN model. Through practical exercises, you will gain experience in evaluating the model's performance and implementing an artificial neural network for stock prediction.
5 videos1 assignment
In this module, we will provide you with further reading and resources to expand your knowledge beyond the course. You'll have access to curated materials that will support your continued learning and mastery of Recurrent Neural Networks and their applications.
1 video1 reading1 assignment
Packt helps tech professionals put software to work by distilling and sharing the working knowledge of their peers. Packt is an established global technical learning content provider, founded in Birmingham, UK, with over twenty years of experience delivering premium, rich content from groundbreaking authors on a wide range of emerging and popular technologies.
Edureka
Course
University of Pennsylvania
Course
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
If you complete the course successfully, your electronic Course Certificate will be added to your Accomplishments page - from there, you can print your Course Certificate or add it to your LinkedIn profile.
This course is one of a few offered on Coursera that are currently available only to learners who have paid or received financial aid, when available.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.