What Is Team Management: Strategies, Duties, Job, Career Outlook
January 21, 2025
Article
Instructor: Packt - Course Instructors
Included with
Recommended experience
Intermediate level
This course is for developers, ML practitioners, and data scientists interested in PyTorch. Python basics are covered, no prior knowledge is needed.
Recommended experience
Intermediate level
This course is for developers, ML practitioners, and data scientists interested in PyTorch. Python basics are covered, no prior knowledge is needed.
Apply gradient descent using AutoGrad.
Analyze the LeNet architecture.
Develop a mini-Python project game.
Utilize NumPy, Pandas, and Matplotlib libraries.
Add to your LinkedIn profile
September 2024
5 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This course offers a comprehensive introduction to PyTorch and deep learning for computer vision, with sections on Python fundamentals for those new to the language or needing a refresher. The curriculum begins with PyTorch basics, followed by instructions on accessing free GPU resources and coding on GPU.
Students will explore PyTorch’s AutoGrad feature and use it to implement gradient descent. The course covers creating deep learning models and convolutional neural networks (CNNs), and applying these skills to real-world datasets. Additionally, students will learn to use key Python libraries such as NumPy, Pandas, and Matplotlib, and will undertake a mini project to build a hangman game in Python. By the end of the course, participants will be equipped to perform computer vision tasks using deep learning. This course is ideal for software developers, machine learning practitioners, and data scientists. Basic Python knowledge is beneficial but not required.
In this module, we will introduce you to the course, outlining what you can expect and why learning PyTorch is beneficial for diving into deep learning and computer vision. We’ll provide a brief overview of the course structure and demonstrate the power of PyTorch through a quick demo.
2 videos1 reading
In this module, we will explore PyTorch, starting with a brief introduction to its core features and functionality. We will delve into the concept of tensors, explaining their importance in deep learning, and demonstrate practical applications of tensors within the PyTorch framework.
In this module, we will dive deep into practical aspects of using PyTorch. Starting with installation on Google Colab, we will cover creating and manipulating tensors, performing mathematical operations, and integrating NumPy arrays. We will also explore CUDA, understanding its role and leveraging GPU acceleration to enhance computational efficiency.
7 videos1 assignment
In this module, we will delve into the AutoGrad functionality in PyTorch, understanding its role in automatic differentiation and gradient computation. We will demonstrate how to implement AutoGrad within loops, optimizing neural network training processes. Additionally, we will explore the computational graphs generated by AutoGrad, providing deeper insights into its operation and efficiency in deep learning tasks.
2 videos
In this module, we will guide you through the process of creating deep neural networks using PyTorch. Starting with building your first neural network, we will then move on to writing more complex deep neural networks. Finally, we will teach you how to design and implement custom neural network modules, providing you with the skills to tailor networks to your specific requirements.
3 videos
In this module, we will focus on Convolutional Neural Networks (CNNs) in PyTorch. You will learn how to load and preprocess the CIFAR10 dataset, visualize data for better insights, and review the fundamentals of convolution operations. We will guide you through building your first CNN and then advance to developing deeper CNN architectures, performing a series of convolution operations to achieve the desired output.
5 videos1 assignment
In this module, we will explore the LeNet architecture, starting with an overview of its structure and historical importance. You will learn how to implement the LeNet model in PyTorch and then proceed to train and evaluate it for practical applications. Additionally, we will discuss how LeNet compares with other CNN architectures and how to optimize its performance through effective preparation and evaluation methods.
3 videos
In this module, we will cover the foundational aspects of Python programming, starting with why learning a programming language is essential and the specific advantages of using Python. You will learn to install and navigate Jupyter Notebook, enhancing your coding experience. This module will also delve into Python basics, including variables, data types, arithmetic operations, strings, Booleans, type conversion, and comments. Further, we will explore Python’s data structures like tuples, sets, and dictionaries, and control flow statements such as "if," "while," and "for" loops. Finally, we will cover functions and classes in Python, providing a comprehensive introduction to Python programming.
21 videos
In this module, we will apply the Python basics learned so far by creating a mini project: the Hangman game. Starting with an introduction to the project, we will develop the necessary classes and objects. We will then proceed to implement the game's logic incrementally, focusing on handling single-letter inputs and other functionalities. Finally, we will conduct thorough testing and debugging to ensure the project runs as expected, consolidating your understanding of Python programming through this hands-on exercise.
6 videos1 assignment
In this module, we will delve into using NumPy for data science applications. You will learn how to create and manipulate arrays, resize and reshape them as needed, and perform slicing operations to select specific data subsets. Additionally, we will cover the concept of broadcasting, enabling you to apply operations across arrays of different shapes. Finally, we will explore various mathematical operations and functions that NumPy offers, enhancing your data manipulation and analysis capabilities.
5 videos
In this module, we will dive into the Pandas library, a powerful tool for data science in Python. You will learn about creating and managing Pandas DataFrames, essential for structured data analysis. We will cover how to load data from external files, manage null values, and use slicing operations to retrieve specific data elements. Additionally, we will discuss imputation techniques to address missing data, ensuring your datasets are clean and ready for analysis.
6 videos
In this module, we will explore Matplotlib, a fundamental library for data visualization in Python. You will learn how to create and format plots, enhancing their clarity and presentation. We will cover the creation and customization of scatter plots for in-depth data analysis, as well as generating histograms to visualize data distributions. By the end of this module, you will be equipped to utilize various plot types and formatting options to effectively present your data insights.
4 videos2 assignments
Packt helps tech professionals put software to work by distilling and sharing the working knowledge of their peers. Packt is an established global technical learning content provider, founded in Birmingham, UK, with over twenty years of experience delivering premium, rich content from groundbreaking authors on a wide range of emerging and popular technologies.
DeepLearning.AI
Course
MathWorks
Course
University of Colorado Boulder
Course
DeepLearning.AI
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
If you complete the course successfully, your electronic Course Certificate will be added to your Accomplishments page - from there, you can print your Course Certificate or add it to your LinkedIn profile.
This course is one of a few offered on Coursera that are currently available only to learners who have paid or received financial aid, when available.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.