What Is Programming? And How To Get Started
January 28, 2025
Article
Recommended experience
Beginner level
Ideal for beginners, students, and professionals, this course requires no prior experience and covers deep learning fundamentals and AI advancements.
Recommended experience
Beginner level
Ideal for beginners, students, and professionals, this course requires no prior experience and covers deep learning fundamentals and AI advancements.
Explain the fundamentals of deep learning and neural networks.
Use Python to build and train your own deep neural network models.
Differentiate between various activation functions and optimization algorithms.
Assess techniques for improving model performance and reducing overfitting.
Add to your LinkedIn profile
September 2024
7 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Unlock the power of deep learning and elevate your machine learning skills with our comprehensive deep neural networks course. This hands-on program covers deep learning fundamentals, including artificial neural networks, activation functions, bias, data, and loss functions.
Learn Python basics focused on data science, and master tools like Matplotlib, NumPy, and Pandas for data cleaning and visualization. Progress from the MP Neuron model to the Perceptron, Sigmoid Neuron, and Universal Approximation Theorem, exploring ReLU and SoftMax activation functions. Gain practical experience with TensorFlow 2.x, creating and training deep neural networks, evaluating their performance, and fine-tuning for optimal results. By the course's end, you'll be on your way to becoming a deep-learning expert. This beginner-friendly course is perfect for students and professionals aiming to stay updated on AI. A basic understanding of programming is recommended but not required, as foundational Python skills are covered in the course.
In this module, we will welcome you to the course and provide an overview of deep learning. We will explain the course objectives, the structure of the content, and the skills and knowledge you will acquire throughout the course.
2 videos1 reading
In this module, we will lay the foundation for understanding deep learning by covering essential topics such as artificial neural networks, activation functions, and bias. We will also explore the role of data, various applications, models, loss functions, and learning algorithms crucial for model performance.
8 videos
In this module, we will provide a crash course on the basics of Python programming, essential for deep learning. You will learn how to install and use Jupyter Notebook and Google Colab, understand data types, containers, control statements, and implement functions and classes in Python.
7 videos1 assignment
In this module, we will delve into Python libraries crucial for data science. You will learn how to handle arrays with NumPy, manipulate data using Pandas, and visualize data with Matplotlib. We will cover topics from basic data structures to advanced data cleaning and plotting techniques.
8 videos
In this module, we will explore the MP Neuron model, also known as the McCulloch-Pitts model. You will gain an understanding of the data intuition, learn how to find parameters, and develop a mathematical intuition for this fundamental concept in neural networks.
4 videos
In this module, we will focus on implementing the MP Neuron model in Python. You will learn how to import datasets, apply train-test split, and modify data. By the end of this section, you will have created an MP Neuron class from scratch and practiced with an assignment.
5 videos1 assignment
In this module, we will summarize the key concepts and practical implementation of the MP Neuron model. We will review the important points and ensure you have a solid understanding through a recap and evaluation assignments.
In this module, we will cover the Perceptron model, discussing its representation, loss function, and parameter updates. You will understand how the update rule works and see its practical implementation in programs.
5 videos
In this module, we will implement the Perceptron model in Python. You will learn to program the model and visualize its accuracy and performance with increasing epochs, enhancing your practical skills in deep learning.
2 videos1 assignment
In this module, we will transition from Perceptron to Sigmoid Neuron. You will learn about the limitations of the Perceptron, the benefits of the Sigmoid Neuron, and gain insights into gradient descent for model optimization.
8 videos
In this module, we will implement the Sigmoid Neuron using Python. You will learn to download and standardize datasets, and create a class for the Sigmoid activation function, solidifying your understanding through practical assignments.
4 videos
In this module, we will cover basic probability concepts. You will learn about random variables, their importance, types, and probability distribution tables, as well as the concept of entropy loss in the context of deep learning.
5 videos1 assignment
In this module, we will explore deep neural networks. You will learn why they are important, and through practical programming, understand the concept of linear separation of data, preparing you for more complex deep learning models.
2 videos
In this module, we will delve into the Universal Approximation Theorem. You will learn its significance, confirm its effectiveness with practical examples, and discuss the challenges of building deep neural networks from scratch.
4 videos
In this module, we will focus on TensorFlow 2.x for deep learning. You will learn to build, train, and evaluate neural networks using TensorFlow, with a recap of deep learning concepts and a summary to prepare for more advanced topics.
7 videos1 assignment
In this module, we will cover activation functions in deep learning. You will learn about different activation functions provided by TensorFlow and understand common network configurations used in deep learning tasks.
4 videos
In this module, we will apply deep learning concepts. You will transition from shallow to deep learning, understand Keras basics, solve classification and regression problems, and explore advanced TensorFlow techniques and subclassing methods.
8 videos2 assignments
Packt helps tech professionals put software to work by distilling and sharing the working knowledge of their peers. Packt is an established global technical learning content provider, founded in Birmingham, UK, with over twenty years of experience delivering premium, rich content from groundbreaking authors on a wide range of emerging and popular technologies.
DeepLearning.AI
Course
University of Colorado Boulder
Build toward a degree
Course
Coursera Project Network
Course
DeepLearning.AI
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
If you complete the course successfully, your electronic Course Certificate will be added to your Accomplishments page - from there, you can print your Course Certificate or add it to your LinkedIn profile.
This course is one of a few offered on Coursera that are currently available only to learners who have paid or received financial aid, when available.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.