What Does MVP Stand For? It’s Not What You Think.
October 7, 2024
Article
This course is part of Programming for Python Data Science: Principles to Practice Specialization
Instructors: Genevieve M. Lipp
1,514 already enrolled
Included with
Recommended experience
Beginner level
You should have a basic understanding of Python programming and NumPy, alongside high school statistics and math.
Recommended experience
Beginner level
You should have a basic understanding of Python programming and NumPy, alongside high school statistics and math.
How and when to leverage the Pandas library for your data science projects
Best practices for cleaning, manipulating, and optimizing data with Pandas
Add to your LinkedIn profile
9 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
How can you effectively use Python to clean, sort, and store data? What are the benefits of using the Pandas library for data science? What best practices can data scientists leverage to better work with multiple types of datasets? In the third course of Data Science Python Foundations Specialization from Duke University, Python users will learn about how Pandas — a common library in Python used for data science — can ease their workflow.
We recommend you should take this course after the first two courses of the specialization. However, if you hold a prerequisite knowledge of basic algebra, Python programming, and NumPy, you should be able to complete the material in this course. In the first week, we’ll discuss Python file concepts, including the programming syntax that allows you to read and write to a file. Then in the following weeks, we’ll transition into discussing Pandas more specifically and the pros and cons of using this library for specific data projects. By the end of this course, you should be able to know when to use Pandas, how to load and clean data in Pandas, and how to use Pandas for data manipulation. This will prepare you to take the next step in your data scientist journey using Python; creating larger software programs.
This module, you will learn how to read data from files into your python program, and write that corresponding data to a file. We’ll be working primarily with string-type data in this unit and will give special attention to the way that python handles strings. Additionally we’ll go over some basic debugging in python using exception traces, and you’ll leverage these to create your own python program that is capable of reading and writing to a file.
5 videos7 readings3 assignments3 programming assignments
This module, you’ll learn how to begin to utilize Pandas, one of the most commonly used libraries in Data Science with python. Pandas is predominantly used for working with tabular data. By the end of this module you’ll be able to identify the hallmarks and quirks of working with tabular data, describe the benefits and limitations of using Pandas, and be able to perform some basic data manipulation techniques in Pandas.
1 video9 readings2 assignments3 ungraded labs
This Module, you will learn how to perform basic file operations in Pandas, as well as how to clean up large datasets. You’ll learn to read and write from common tabular file formats, and Pandas-specific intricacies for working with that data. Additionally, you’ll learn best practices for cleaning your data.
1 video13 readings3 assignments4 ungraded labs
This module you will learn how to combine datasets from different sources. Pandas has different methods of combining data depending on your preferred outcome, and you’ll be able to differentiate between when to use each kind. Additionally, we’ll go over computationally efficient ways of querying your data, which, while similar to selecting data via subsetting in its outcomes, has a distinct set of advantages.
1 video11 readings1 assignment5 ungraded labs
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
Coursera Project Network
Course
Coursera Project Network
Course
University of Colorado Boulder
Specialization
Coursera Project Network
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.