What Does MVP Stand For? It’s Not What You Think.
October 7, 2024
Article
Add to your LinkedIn profile
October 2024
4 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Probability and statistics provide an excellent tool for understanding, modeling and communicating uncertainty in engineering systems. In many applications there is the added challenge of considering random quantities that vary over time and/or space. Examples can be found in seismic applications, financial markets, heterogeneous materials, and image processing, among many others. This course provides an introduction into some of the ways in which random processes and random fields are measured, quantified and communicated. Through video lectures, activities, and interactive content, students will learn about correlation functions, spectral density functions, local average processes and Monte Carlo simulation. There will be an emphasis on understanding each concept, estimating these quantities from data, and using this data as the basis for generating realistic sample random processes.
By the end of this course, you will be able to: - Explain the meaning of the correlation function, the spectral density function, homogeneity, ergodicity. - Identify parameters of a random process based on available data. - Relate random process descriptors to reliability via maximum value distributions. - Simulate a random process with desired correlation and/or spectral density function.
In this module, you will be introduced to some basic definitions of random processes and examples of engineering applications in which they are important. There will also be a review of probability density functions to introduce the marginal distribution that describes a random process.
5 videos1 reading1 assignment1 discussion prompt
In this module, you will be introduced to the correlation function and correlation length as a means to describe random processes. You will learn to recognize how changes in the correlation function affect the random process, and vice versa. Finally, there will be a case study in which the correlation function & length are calculated based on a given set of data.
5 videos1 reading1 assignment1 ungraded lab
In this module, you will be introduced to the spectral density function as an alternative means to describe random processes. You will learn to recognize how changes in the spectral density function affect the random process, and vice versa. Finally, there will be a case study in which the spectral density function & moments are calculated based on a given set of data.
6 videos1 assignment1 ungraded lab
In this module, you will work with simulation-based approaches to generate random processes, based on the correlation function or the spectral density function. The approach will be applied in the context of reliability.
3 videos1 assignment2 ungraded labs
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
University of Zurich
Course
Johns Hopkins University
Course
University of Geneva
Course
Johns Hopkins University
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.