What Is Programming? And How To Get Started
January 28, 2025
Article
This course is part of Machine Learning for Marketing Specialization
Instructor: Prof. Lalit Pankaj
Included with
Recommended experience
Beginner level
You should have basic understanding of marketing concepts and data analytics techniques.
Recommended experience
Beginner level
You should have basic understanding of marketing concepts and data analytics techniques.
Comprehend what text mining is, what it accomplishes, and what use cases it can be put to in the marketing discipline.
Examine how theoretical issues are translated into practical applications in text mining for the marketing domain.
Identify the potent analytical techniques that you can apply to text and other types of data.
Explain what constitutes sound practices and what does not while analyzing texts for decision-making in marketing.
Add to your LinkedIn profile
36 assignments
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Welcome to the Text Mining for Marketing course! This course will introduce you to the principles and methods of text mining as they apply to the field of marketing. You will learn how and why to use text mining to inform marketing decisions and strategies. This course is for everyone interested in practical applications of text mining in the marketing discipline and who wants to understand it and apply it. This course is not for those who are looking for programming instructions and mathematical routines.
This is a beginner-level course that will bring awareness to the present practice of text mining in marketing. It will help you to get familiarized with practical tips about when and where to use various techniques and tools. You will learn about critical theories and concepts with the help of relevant examples. After the successful completion of this course, you will develop a basic understanding of how to use text mining techniques for making marketing decisions. You will gain sufficient knowledge of foundational elements, what is the relationship between textual data and marketing constructs/concepts, and how text mining and marketing work in tandem to produce relevant insights for today’s market. It will also provide you with concrete strategies to get started with text mining in marketing. To succeed in this course, you should have experience in/know about/have basic understanding of marketing concepts and data analytics techniques. Students must understand the difference between data analytics and text analytics.
The module describes the importance of text mining in marketing, its definition, and its role in analyzing unstructured data to uncover hidden insights, trends, and patterns. The module further explains how text mining enables businesses to analyze customer feedback, social media posts, online reviews, and other textual sources to gain insights into customer behavior and preferences. The text mining process involves data acquisition, preprocessing, text analysis, and interpretation. The module also discusses the benefits of text mining in marketing, such as sentiment analysis, customer segmentation, and monitoring brand reputation. Finally, the module discusses the challenges of analyzing unstructured text data and future directions in text data analysis.
6 videos5 readings4 assignments
In this module, you will learn about customer feedback analysis, brand monitoring, and reputation management. It explains how text mining techniques can be used to analyze and extract useful information from unstructured or semi-structured textual data. It also highlights the benefits of leveraging machine learning and AI for customer feedback analysis and how sentiment analysis and named entity recognition can help monitor brand reputation. This module also discusses the use of text mining in two different business areas, competitive analysis and customer segmentation. The module explains the importance of these areas and their benefits for businesses. The module focuses on how text mining can be used in these areas, and it discusses different text mining techniques and their applications.
4 videos4 readings4 assignments1 discussion prompt
This assessment is a graded quiz based on the modules covered this week.
1 assignment
The module covers various text mining techniques that can be used in marketing to analyze customer feedback, monitor brand reputation, identify trends and patterns, and develop targeted marketing strategies. It aims to provide an overview of the exponential growth of data and access to unstructured or semi-structured text data and the importance of text mining for businesses to make informed decisions and enhance customer experiences. This module also describes two different text mining techniques: sentiment analysis and topic modeling. These techniques can be applied to a wide range of text data, including customer reviews, social media posts, news articles, and even internal documents such as emails and reports.
4 videos4 readings4 assignments
In this module, we will discuss the concept of named entity recognition (NER), which is a text-mining technique used to identify and classify named entities, such as people, organizations, locations, and dates, mentioned in a piece of text data. The module explains the importance of NER in natural language processing (NLP) and various industries, including marketing. This module also explains the importance of text classification in analyzing large volumes of text data and its applications in sentiment analysis, spam detection, and customer segmentation. This module describes two other techniques, i.e., topic clusterings and Bayes Nets, that can be used to analyze and make sense of unstructured data. Topic clustering involves grouping similar pieces of text data together based on their shared topics or themes, whereas Bayes Nets is a unique group of techniques with potent predictive abilities that employ graphical analytical approaches to categorize relationships between variables.
4 videos4 readings4 assignments1 discussion prompt
This assessment is a graded quiz based on the modules covered this week.
1 assignment
This module provides an overview of the challenges and limitations of text mining in marketing. It highlights the significance of text mining in marketing and outlines several challenges and limitations marketers face while using text mining techniques in their decision-making. In this module, we will also discuss different aspects of text mining in the marketing domain. First, we will highlight the importance of data quality and reliability, discussing the challenges of the accuracy and reliability of unstructured text data. In the later part, we will focus on data privacy concerns in text mining, covering regulations such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA).
4 videos4 readings4 assignments
This module discusses the challenges of lack of context and complex data analysis in text mining for marketing. It explains how these challenges can lead to inaccurate analysis and incorrect conclusions. It also highlights the need for businesses to use techniques, such as sentiment analysis and natural language processing, to overcome these challenges and make accurate and informed decisions based on text data analysis. In the second half, we will discuss the challenges faced by marketers while adopting text-mining techniques for decision-making, with a focus on the cost associated with text mining and the technical skills and expertise required. It also highlights the need to invest in necessary resources and expertise to effectively use text mining tools and processes.
4 videos4 readings4 assignments1 discussion prompt
This assessment is a graded quiz based on the modules covered this week.
1 assignment
This module discusses the future directions of text mining in marketing, focusing on the advancements in machine learning and AI. The module covers various areas of development that are likely to shape the field of text mining, such as the integration of text mining with other forms of data analysis, the development of more advanced text mining algorithms, the use of machine learning and AI, the development of specialized tools and applications, and the development of new techniques for protecting customer privacy. This module also discusses the integration of text mining with other marketing technologies and new sources of data and analysis in text mining for marketing. It explores the potential applications of text mining in marketing, including how text mining can be integrated with existing marketing technologies, such as customer relationship management (CRM) software, marketing automation tools, and analytics platforms. The module also discusses emerging technologies, such as natural language processing (NLP) and chatbots, and how text mining can be integrated with these technologies to gain more accurate insights.
4 videos4 readings4 assignments
The module focuses on the implications of text mining in marketing practice and research, including the opportunities presented by advancements in machine learning and artificial intelligence. It also highlights the ethical concerns related to the use of text mining techniques in marketing, such as privacy violations, feedback manipulation, targeting vulnerable customers, and potential biases. This module also provides an in-depth exploration of the potential applications of text mining techniques in marketing. It highlights the crucial role that text mining can play in providing valuable insights into customer feedback, monitoring brand reputation, conducting competitive analysis, and segmentation of customer behavior. The module discusses the future directions of text mining in marketing, including the integration of new sources of data, such as voice data, image and video data, and customer journey data. The implications of text mining for marketing practice and research are also explored, including ethical considerations.
4 videos4 readings4 assignments1 discussion prompt
This assessment is a graded quiz based on the modules covered this week.
1 video1 assignment
O.P. Jindal Global University is recognised as an Institution of Eminence by the Ministry of Education, Government of India. It is also ranked the No. 1 Private University in India in the QS World University Rankings 2021. The university has 9000+ students across 12 schools that offer 52 degree programs. The university maintains a 1:9 faculty-student ratio. It is a research-intensive university, deeply committed to institutional values of interdisciplinary and innovative learning, pluralism and rigorous scholarship, globalism, and international engagement.
O.P. Jindal Global University
Course
University of Colorado Boulder
Build toward a degree
Specialization
University of Illinois Urbana-Champaign
Course
Yonsei University
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.