IBM
Data Engineering Foundations Specialization
IBM

Data Engineering Foundations Specialization

Build the Foundation for a Data Engineering Career. Develop hands-on experience with Python, SQL, and Relational Databases and master the fundamentals of the Data Engineering ecosystem.

Abhishek Gagneja
Joseph Santarcangelo
Rav Ahuja

Instructors: Abhishek Gagneja

Sponsored by University of Texas at Austin

15,669 already enrolled

Get in-depth knowledge of a subject
4.7

(1,247 reviews)

Beginner level

Recommended experience

2 months
at 10 hours a week
Flexible schedule
Learn at your own pace
Get in-depth knowledge of a subject
4.7

(1,247 reviews)

Beginner level

Recommended experience

2 months
at 10 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Working knowledge of Data Engineering Ecosystem and Lifecycle. Viewpoints and tips from Data professionals on starting a career in this domain.

  • Python programming basics including data structures, logic, working with files, invoking APIs, using libraries such as Pandas and Numpy, doing ETL.

  • Relational Database fundamentals including Database Design, Creating Schemas, Tables, Constraints, and working with MySQL, PostgreSQL & IBM Db2.

  • SQL query language, SELECT, INSERT, UPDATE, DELETE statements, database functions, stored procs, working with multiple tables, JOINs, & transactions.

Details to know

Shareable certificate

Add to your LinkedIn profile

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Advance your subject-matter expertise

  • Learn in-demand skills from university and industry experts
  • Master a subject or tool with hands-on projects
  • Develop a deep understanding of key concepts
  • Earn a career certificate from IBM
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

Specialization - 5 course series

Introduction to Data Engineering

Course 113 hours4.7 (2,799 ratings)

What you'll learn

  • List basic skills required for an entry-level data engineering role.

  • Discuss various stages and concepts in the data engineering lifecycle.

  • Describe data engineering technologies such as Relational Databases, NoSQL Data Stores, and Big Data Engines.

  • Summarize concepts in data security, governance, and compliance.

Skills you'll gain

Category: Data Management
Category: Databases
Category: Network Security
Category: Big Data
Category: Leadership and Management
Category: SQL

Python for Data Science, AI & Development

Course 225 hours4.6 (38,797 ratings)

What you'll learn

  • Learn Python - the most popular programming language and for Data Science and Software Development.

  • Apply Python programming logic Variables, Data Structures, Branching, Loops, Functions, Objects & Classes.

  • Demonstrate proficiency in using Python libraries such as Pandas & Numpy, and developing code using Jupyter Notebooks.

  • Access and web scrape data using APIs and Python libraries like Beautiful Soup.

Python Project for Data Engineering

Course 39 hours4.6 (687 ratings)

What you'll learn

  • Demonstrate your skills in Python for working with and manipulating data

  • Implement webscraping and use APIs to extract data with Python

  • Play the role of a Data Engineer working on a real project to extract, transform, and load data

  • Use Jupyter notebooks and IDEs to complete your project

Introduction to Relational Databases (RDBMS)

Course 415 hours4.6 (597 ratings)

What you'll learn

  • Describe data, databases, relational databases, and cloud databases.

  • Describe information and data models, relational databases, and relational model concepts (including schemas and tables). 

  • Explain an Entity Relationship Diagram and design a relational database for a specific use case.

  • Develop a working knowledge of popular DBMSes including MySQL, PostgreSQL, and IBM DB2

Databases and SQL for Data Science with Python

Course 520 hours4.7 (20,672 ratings)

What you'll learn

  • Analyze data within a database using SQL and Python.

  • Create a relational database and work with multiple tables using DDL commands.

  • Construct basic to intermediate level SQL queries using DML commands.

  • Compose more powerful queries with advanced SQL techniques like views, transactions, stored procedures, and joins.

Instructors

Abhishek Gagneja
IBM
5 Courses149,429 learners
Joseph Santarcangelo
IBM
33 Courses1,667,151 learners

Offered by

IBM

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."
Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy