Northeastern University
Foundations of Statistical Learning & Algorithms
Northeastern University

Foundations of Statistical Learning & Algorithms

Rehab Ali

Instructor: Rehab Ali

Sponsored by HKUST

Gain insight into a topic and learn the fundamentals.
21 hours to complete
3 weeks at 7 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
21 hours to complete
3 weeks at 7 hours a week
Flexible schedule
Learn at your own pace

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

This module provides a foundational understanding of linear algebra concepts essential for statistical learning and algorithms. You will explore the principles of linear systems, matrix operations, vector spaces, orthogonality, and projections. These topics will lay the groundwork for understanding more advanced machine learning and statistical modeling techniques.

What's included

4 videos20 readings3 assignments1 app item1 discussion prompt

This module covers essential linear algebra concepts, focusing on linear mappings, eigenvectors, eigenvalues, Cholesky decomposition, and singular value decomposition. You'll learn to apply linear mappings, interpret eigenvectors and eigenvalues, and explore the Cholesky decomposition for symmetric, positive definite matrices. Additionally, you'll delve into singular value decomposition and its applications. The lessons include linear independence, linear mappings, eigenvalues and eigenvectors, Cholesky decomposition, and singular value decomposition, providing a comprehensive understanding of these critical topics.

What's included

2 videos11 readings1 assignment1 app item

This module focuses on essential probability concepts and their applications in machine learning. You will explore the sum rule, product rule, and Bayes' theorem, understanding how these principles are applied to solve complex problems. Additionally, you'll learn to apply Bayesian inference to estimate hidden variables from observed data, enhancing your ability to make informed predictions and decisions in machine learning contexts. These topics will provide a solid foundation for understanding and implementing probabilistic models in various machine learning scenarios.

What's included

11 readings1 assignment

This module covers key techniques for enhancing machine learning models. You will learn to minimize the error or loss of a model through various optimization methods. Additionally, you'll explore different cross-validation techniques to assess model performance and generalizability. By examining various optimization techniques, you'll improve model accuracy and efficiency. These topics will equip you with the skills to fine-tune and validate your machine learning models effectively.

What's included

15 readings1 assignment

Instructor

Rehab Ali
Northeastern University
1 Course15 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Physical Science and Engineering

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy