University of Michigan
Arranging and Visualizing Data in R
University of Michigan

Arranging and Visualizing Data in R

Philip S. Boonstra

Instructor: Philip S. Boonstra

Sponsored by InternMart, Inc

1,811 already enrolled

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

18 hours to complete
3 weeks at 6 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

18 hours to complete
3 weeks at 6 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Become knowledgeable about and conversant in the R environment

  • Format and manipulate data within R into suitable formats

  • Develop an intuition for doing exploratory data analysis

  • Develop a workflow in R

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

13 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Data Science for Health Research Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

Module 1 will cover all of the tasks to get you up and running in R. You’ll learn how to access R, how to navigate it, how to install R packages, and how to create scripts that keep a record of your work. We will also learn about The Global Findex Database 2017, a population-based survey and report that provides a wealth of information on financial access for persons all over the world. Your assessments will use data from The Global Findex Database 2017 to create a table and figure from the report.

What's included

9 videos8 readings4 assignments1 discussion prompt

In Module 2, you will develop insight into how functions work as you are introduced to various functions from the tidyverse, which is a collection of eight R packages useful in data science. The lessons will guide you through performing common data wrangling tasks, such as filtering observations of a dataset and joining data from different sources. By the end of the module, you will have used these tools to reproduce the Indicator Table from The Global Findex Database 2017, which estimates account ownership statistics, including gender and income gaps, for all of the surveyed countries.

What's included

15 videos13 readings5 assignments1 discussion prompt

Module 3 introduces you to R graphical capabilities. You will both learn about different types of plots – including scatterplots, lineplots, barplots, boxplots, and histograms – and how to make them in R. You’ll learn how to create multipanel plots. And you’ll continue to learn good overall R “hygiene” by keeping your code tidy. You’ll put these newly learned skills to work re-creating Figure 1.1 from The Global Findex Database 2017, which shows how account ownership varies by the income level of a country.

What's included

19 videos7 readings4 assignments

Having worked through the first three modules, you’ve (re)produced a table and figure from The Global Findex Database 2017. Now what? In Module 4, you will learn about sharing your work with others: exporting tables and figures from R onto your computer. You’ll be introduced to a means of writing reports in R using RMarkdown. And finally we’ll talk about what happens when you get stuck: how to ask questions and where to get help.

What's included

5 videos4 readings1 peer review

Instructor

Philip S. Boonstra
University of Michigan
4 Courses2,488 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy