University of Colorado Boulder
Requirement Specifications for Autonomous Systems
University of Colorado Boulder

Requirement Specifications for Autonomous Systems

Majid Zamani

Instructor: Majid Zamani

Sponsored by InternMart, Inc

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

10 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

10 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Utilize formal methods to specify and verify requirements for autonomous systems.

  • Model system behaviors and verify stability using various analytical methods.

  • Apply reachable set computation and robustness analysis in system design.

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

6 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Foundations of Autonomous Systems Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 5 modules in this course

In this course, we delve into both low-level and high-level specifications, fundamental to the development of safe autonomous systems. This module is specifically designed to equip students with an in-depth understanding of expressing system behaviors through formal methods, including linear temporal logic and automata on both finite and infinite strings. Through a collection of detailed examples and practical applications, participants will acquire the skills needed to define and analyze key properties of autonomous systems, such as safety and reachability.

What's included

3 videos8 readings

This module offers a concise introduction to normed vector spaces and stability concepts in autonomous systems, encompassing both asymptotic stability and global asymptotic stability. It emphasizes the application of Lyapunov's Stability Theorem for the formal verification of these properties in complex systems, including its application to various simple systems, such as linear ones. Through illustrative examples, we will demonstrate the significance of these concepts in analyzing and ensuring the stability of systems.

What's included

14 videos1 reading1 assignment

Delve into the topic of reachable sets and uncover their critical role in guaranteeing system safety. This module introduces frameworks for exploring computational techniques to over-approximate reachable sets across diverse system classes. You will have the chance to apply your knowledge in real-world contexts, investigate the use of zonotopes, and recognize their beneficial properties in the computation of reachable sets. Moreover, we delve into fundamental concepts of formal languages, and regular and omega-regular expressions, offering succinct and formal methods to express regular and omega-regular languages, respectively.

What's included

7 videos1 reading1 assignment

This module immerses you in the essential principles of regular and ω-regular properties and how they are represented via non-deterministic finite automata (NFA) and Büchi automata (NBA), respectively. You will study the notation and architecture of NFAs and NBAs, master the construction of regular and ω-regular expressions, and grasp their correlation with these automata. The course will navigate you through the conversion of NFAs to regular expressions and NBAs to ω-regular expressions and the inverse, elucidating the significance of these concepts in the verification of finite and infinite behaviors of systems.

What's included

13 videos1 reading2 assignments

This module provides an in-depth exploration of Linear Temporal Logic (LTL) formulas, a mathematical formalism for describing languages containing infinite words. It presents a framework for articulating the temporal dimensions of system behaviors, offering a syntax that closely mirrors natural language. By melding propositional logic with temporal operators, LTL furnishes a powerful toolkit for specifying the rich behaviors of systems.

What's included

3 videos1 reading2 assignments

Instructor

Majid Zamani
University of Colorado Boulder
3 Courses1,338 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Computer Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy