O.P. Jindal Global University

Text Mining for Marketing

Prof. Lalit Pankaj

Instructor: Prof. Lalit Pankaj

Sponsored by InternMart, Inc

Gain insight into a topic and learn the fundamentals.
Beginner level

Recommended experience

20 hours to complete
3 weeks at 6 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Beginner level

Recommended experience

20 hours to complete
3 weeks at 6 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Comprehend what text mining is, what it accomplishes, and what use cases it can be put to in the marketing discipline.

  • Examine how theoretical issues are translated into practical applications in text mining for the marketing domain.

  • Identify the potent analytical techniques that you can apply to text and other types of data.

  • Explain what constitutes sound practices and what does not while analyzing texts for decision-making in marketing.

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

36 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Machine Learning for Marketing Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 12 modules in this course

The module describes the importance of text mining in marketing, its definition, and its role in analyzing unstructured data to uncover hidden insights, trends, and patterns. The module further explains how text mining enables businesses to analyze customer feedback, social media posts, online reviews, and other textual sources to gain insights into customer behavior and preferences. The text mining process involves data acquisition, preprocessing, text analysis, and interpretation. The module also discusses the benefits of text mining in marketing, such as sentiment analysis, customer segmentation, and monitoring brand reputation. Finally, the module discusses the challenges of analyzing unstructured text data and future directions in text data analysis.

What's included

6 videos5 readings4 assignments

In this module, you will learn about customer feedback analysis, brand monitoring, and reputation management. It explains how text mining techniques can be used to analyze and extract useful information from unstructured or semi-structured textual data. It also highlights the benefits of leveraging machine learning and AI for customer feedback analysis and how sentiment analysis and named entity recognition can help monitor brand reputation. This module also discusses the use of text mining in two different business areas, competitive analysis and customer segmentation. The module explains the importance of these areas and their benefits for businesses. The module focuses on how text mining can be used in these areas, and it discusses different text mining techniques and their applications.

What's included

4 videos4 readings4 assignments1 discussion prompt

This assessment is a graded quiz based on the modules covered this week.

What's included

1 assignment

The module covers various text mining techniques that can be used in marketing to analyze customer feedback, monitor brand reputation, identify trends and patterns, and develop targeted marketing strategies. It aims to provide an overview of the exponential growth of data and access to unstructured or semi-structured text data and the importance of text mining for businesses to make informed decisions and enhance customer experiences. This module also describes two different text mining techniques: sentiment analysis and topic modeling. These techniques can be applied to a wide range of text data, including customer reviews, social media posts, news articles, and even internal documents such as emails and reports.

What's included

4 videos4 readings4 assignments

In this module, we will discuss the concept of named entity recognition (NER), which is a text-mining technique used to identify and classify named entities, such as people, organizations, locations, and dates, mentioned in a piece of text data. The module explains the importance of NER in natural language processing (NLP) and various industries, including marketing. This module also explains the importance of text classification in analyzing large volumes of text data and its applications in sentiment analysis, spam detection, and customer segmentation. This module describes two other techniques, i.e., topic clusterings and Bayes Nets, that can be used to analyze and make sense of unstructured data. Topic clustering involves grouping similar pieces of text data together based on their shared topics or themes, whereas Bayes Nets is a unique group of techniques with potent predictive abilities that employ graphical analytical approaches to categorize relationships between variables.

What's included

4 videos4 readings4 assignments1 discussion prompt

This assessment is a graded quiz based on the modules covered this week.

What's included

1 assignment

This module provides an overview of the challenges and limitations of text mining in marketing. It highlights the significance of text mining in marketing and outlines several challenges and limitations marketers face while using text mining techniques in their decision-making. In this module, we will also discuss different aspects of text mining in the marketing domain. First, we will highlight the importance of data quality and reliability, discussing the challenges of the accuracy and reliability of unstructured text data. In the later part, we will focus on data privacy concerns in text mining, covering regulations such as the General Data Protection Regulation (GDPR) and the California Consumer Privacy Act (CCPA).

What's included

4 videos4 readings4 assignments

This module discusses the challenges of lack of context and complex data analysis in text mining for marketing. It explains how these challenges can lead to inaccurate analysis and incorrect conclusions. It also highlights the need for businesses to use techniques, such as sentiment analysis and natural language processing, to overcome these challenges and make accurate and informed decisions based on text data analysis. In the second half, we will discuss the challenges faced by marketers while adopting text-mining techniques for decision-making, with a focus on the cost associated with text mining and the technical skills and expertise required. It also highlights the need to invest in necessary resources and expertise to effectively use text mining tools and processes.

What's included

4 videos4 readings4 assignments1 discussion prompt

This assessment is a graded quiz based on the modules covered this week.

What's included

1 assignment

This module discusses the future directions of text mining in marketing, focusing on the advancements in machine learning and AI. The module covers various areas of development that are likely to shape the field of text mining, such as the integration of text mining with other forms of data analysis, the development of more advanced text mining algorithms, the use of machine learning and AI, the development of specialized tools and applications, and the development of new techniques for protecting customer privacy. This module also discusses the integration of text mining with other marketing technologies and new sources of data and analysis in text mining for marketing. It explores the potential applications of text mining in marketing, including how text mining can be integrated with existing marketing technologies, such as customer relationship management (CRM) software, marketing automation tools, and analytics platforms. The module also discusses emerging technologies, such as natural language processing (NLP) and chatbots, and how text mining can be integrated with these technologies to gain more accurate insights.

What's included

4 videos4 readings4 assignments

The module focuses on the implications of text mining in marketing practice and research, including the opportunities presented by advancements in machine learning and artificial intelligence. It also highlights the ethical concerns related to the use of text mining techniques in marketing, such as privacy violations, feedback manipulation, targeting vulnerable customers, and potential biases. This module also provides an in-depth exploration of the potential applications of text mining techniques in marketing. It highlights the crucial role that text mining can play in providing valuable insights into customer feedback, monitoring brand reputation, conducting competitive analysis, and segmentation of customer behavior. The module discusses the future directions of text mining in marketing, including the integration of new sources of data, such as voice data, image and video data, and customer journey data. The implications of text mining for marketing practice and research are also explored, including ethical considerations.

What's included

4 videos4 readings4 assignments1 discussion prompt

This assessment is a graded quiz based on the modules covered this week.

What's included

1 video1 assignment

Instructor

Prof. Lalit Pankaj
O.P. Jindal Global University
2 Courses591 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Business

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy