Career prospects are bright for those qualified to work with healthcare data or as Health Information Management (HIM) professionals. Perhaps you work in data analytics but are considering a move into healthcare, or you work in healthcare but are considering a transition into a new role. In either case, Healthcare Data Quality and Governance will provide insight into how valuable data assets are protected to maintain data quality. This serves care providers, patients, doctors, clinicians, and those who carry out the business of improving health outcomes.
Healthcare Data Quality and Governance
This course is part of Health Information Literacy for Data Analytics Specialization
Instructor: Doug Berman
Sponsored by ITC-Infotech
9,449 already enrolled
(104 reviews)
Skills you'll gain
Details to know
Add to your LinkedIn profile
4 assignments
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 4 modules in this course
In this module, you will be able to define data quality and what drives it. You'll be able to recall and describe four key aspects of data quality. You'll be able to explain why data quality is important for operations, for patient care, and for the finances of healthcare providers. You'll be able to discuss how data may change over time, and how finding those changes allows us to recognize and work with the issues the changes cause. You will be able to explain why requirements for data quality depend on how we intend to use that data and understand four levels of quality that may be applied for different kinds of analysis. You will also be able to discuss how all of this supports our ability to do our best work in the best ways possible.
What's included
6 videos2 readings1 assignment2 discussion prompts
This module focuses on measuring data quality. After this module, you will be able to describe metadata, list what metadata may include, give some examples of metadata and recall some of its uses as it relates to measuring data quality. We will describe data provenance to explains how knowing the origin of a data set can help data analysts determine if a data set is suitable for a particular use. We’ll also describe 5 components of data quality you can recall and use when evaluating data. You will also learn to be able to distinguish between data verification and validation, recalling 4 applicable data validation methods and 3 concepts useful to validate data. In addition to your video lessons, you will read and discuss a scholarly article on Methods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. We wrap up the module with a framework abbreviated as S-B-A-R that is often used in healthcare team situations to communicate about issues that must be solved.
What's included
7 videos1 reading1 assignment3 discussion prompts
In this module, we focus on monitoring, managing, and improving data quality. You will be able to explain how to monitor data on a day-to-day basis to see that it remains consistent. You will explain how measures can help us monitor the patient health and the quality of care they receive over time. Also, you will be able to discuss establishing the culture of quality throughout the data lifecycle and improving data quality from the baseline by posing questions to determine a baseline of data quality. You will be able to manage data quality through expected and unexpected changes, along with tracking monitoring strategies along the data pipeline. After this module, you will be able to identify and fix common deficiencies in the data and implement change control systems as a monitoring tool. You’ll also recall several best practices you can apply on the job to monitor data quality in the healthcare field.
What's included
5 videos1 assignment1 discussion prompt
IIn this module, we focus on sustaining quality through data governance. We will define data governance and consider why it matters in healthcare. You will discuss who makes up data governance committees, how these committees function relative to data analysts and describe how stakeholders work together to ensure data quality. You’ll be able to describe how high-quality data is a valuable asset for any business. You will also define data governance systems. You will recall several ways data can be repurposed and explain how data governance maintains data quality as it is repurposed for a use other than that for which it was originally gathered. In addition to your video lessons, you will read and discuss the article, Big Data, Bigger Outcomes and practice applying some of these important concepts.
What's included
6 videos3 readings1 assignment1 peer review1 discussion prompt
Instructor
Offered by
Why people choose Coursera for their career
Learner reviews
104 reviews
- 5 stars
73.07%
- 4 stars
18.26%
- 3 stars
6.73%
- 2 stars
0%
- 1 star
1.92%
Showing 3 of 104
Reviewed on May 13, 2021
Its very good course, more examples should be added . Really enjoyed
Reviewed on Feb 12, 2023
the best programme I could find on any online platform. Thanks UC DAVIS
Reviewed on Oct 21, 2021
Very comprehensive and effectively explained. Highly recommended.
Recommended if you're interested in Health
University of Michigan
Johns Hopkins University
The University of Edinburgh
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy