LearnQuest

Machine Learning Models in Science

Sabrina Moore
Rajvir Dua
Neelesh Tiruviluamala

Instructors: Sabrina Moore

Sponsored by BrightStar Care

1,801 already enrolled

Gain insight into a topic and learn the fundamentals.
4.0

(12 reviews)

Intermediate level

Recommended experience

11 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
4.0

(12 reviews)

Intermediate level

Recommended experience

11 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Implement and evaluate machine learning models (neural networks, random forests, etc.) on scientific data in Python

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

5 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the AI for Scientific Research Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

In this module, we'll tackle the steps taken before we can use AI algorithms. We'll start with an introduction to the most prominent data preprocessing techniques including filling in missing values and removing outliers. Then we'll dive into data transformations including PCA and LDA, two methods featured heavily for dimensionality reduction. Finally, we'll learn how to code the algorithms in Python to set up your data for use in the next module.

What's included

12 videos4 readings2 assignments1 discussion prompt

In this module, we'll dive into two of the most foundational machine learning algorithms: K-Means and support vector machines. We'll start by comparing the two branches of ML: supervised and unsupervised learning. Then, we'll go into the specific similarities and differences between K-Nearest neighbors for classification and K-Means clustering. Finally, we'll perform deep dives into K-Means and SVMs, learning the basic theory behind them and how to implement each in Python.

What's included

4 videos3 readings2 assignments1 programming assignment1 discussion prompt2 ungraded labs

In this module, we'll explore some advanced AI techniques. We'll start with tree-based algorithms, made popular because of the use of random forests for both classification and regression. Then, we'll build our way to neural networks, starting from experimentation on the different models. We'll spend some time in the Tensorflow playground getting familiar with the different mechanics behind neural networks. Finally, we'll code our own neural networks to make predictions on unseen data.

What's included

1 video4 readings1 assignment1 programming assignment1 discussion prompt2 ungraded labs

In this module, we'll go through a course project to predict diabetes from health data. We'll compare different regressors by implementing them and checking the error on a test set.

What's included

1 programming assignment1 ungraded lab

Instructors

Sabrina Moore
LearnQuest
3 Courses62,373 learners

Offered by

LearnQuest

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

4.0

12 reviews

  • 5 stars

    50%

  • 4 stars

    8.33%

  • 3 stars

    33.33%

  • 2 stars

    8.33%

  • 1 star

    0%

Showing 3 of 12

RJ
4

Reviewed on Jul 7, 2022

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy