In this Machine Learning in Production course, you will build intuition about designing a production ML system end-to-end: project scoping, data needs, modeling strategies, and deployment patterns and technologies. You will learn strategies for addressing common challenges in production like establishing a model baseline, addressing concept drift, and performing error analysis. You’ll follow a framework for developing, deploying, and continuously improving a productionized ML application.
Machine Learning in Production
Instructor: Andrew Ng
Top Instructor
Sponsored by MAHE Manipal
129,427 already enrolled
(3,125 reviews)
Recommended experience
What you'll learn
Identify key components of the ML project lifecycle, pipeline & select the best deployment & monitoring patterns for different production scenarios.
Optimize model performance and metrics by prioritizing disproportionately important examples that represent key slices of a dataset.
Solve production challenges regarding structured, unstructured, small, and big data, how label consistency is essential, and how you can improve it.
Skills you'll gain
Details to know
Add to your LinkedIn profile
6 assignments
See how employees at top companies are mastering in-demand skills
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 3 modules in this course
This week covers a quick introduction to machine learning production systems focusing on their requirements and challenges. Next, the week focuses on deploying production systems and what is needed to do so robustly while facing constantly changing data.
What's included
8 videos3 readings2 assignments1 app item2 ungraded labs
This week is about model strategies and key challenges in model development. It covers error analysis and strategies to work with different data types. It also addresses how to cope with class imbalance and highly skewed data sets.
What's included
16 videos2 readings2 assignments1 ungraded lab
This week is all about working with different data types and ensuring label consistency for classification problems. This leads to establishing a performance baseline for your model and discussing strategies to improve it given your time and resources constraints. This week also includes the final end-to-end project.
What's included
17 videos5 readings2 assignments2 ungraded labs
Instructor
Offered by
Why people choose Coursera for their career
Learner reviews
3,125 reviews
- 5 stars
84.38%
- 4 stars
12.84%
- 3 stars
1.88%
- 2 stars
0.60%
- 1 star
0.28%
Showing 3 of 3125
Reviewed on Dec 5, 2021
I have been involved with deep learning for more than 5 years (in academia), nevertheless learned a lot already. I am very curious about the next courses. Thanks for putting together this course!
Reviewed on May 19, 2021
Excellent course, as always! Many thanks!
Reviewed on Jun 4, 2021
really a great course. It'll really change your way of thinking ML in production use and will help you better understand how can you leverage the power of ML in a way that I'll really create a value
Recommended if you're interested in Data Science
Amazon Web Services
Johns Hopkins University
University of Michigan
Google Cloud
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy