In this comprehensive course, you'll embark on a journey through the foundational elements and core concepts of PyTorch, one of the most popular deep learning frameworks. Starting with a detailed overview and system setup, you'll be guided through installing and configuring your environment to ensure a smooth learning experience. The course then transitions into the basics of machine learning and artificial intelligence, laying the groundwork for more advanced topics.
Foundations and Core Concepts of PyTorch
This course is part of PyTorch Ultimate 2024 - From Basics to Cutting-Edge Specialization
Instructor: Packt - Course Instructors
Sponsored by Mojatu Foundation
Recommended experience
What you'll learn
Set up and configure a PyTorch environment.
Understand fundamental AI and machine learning concepts.
Build, train, and evaluate neural networks from scratch, utilizing various optimization techniques
Apply PyTorch to real-world deep learning tasks.
Details to know
Add to your LinkedIn profile
4 assignments
September 2024
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 7 modules in this course
In this module, we will introduce you to the course structure, covering the main topics and learning objectives. You'll learn how to set up your system, including installing necessary software and creating a conda environment. We'll also guide you on accessing course materials and provide tips for navigating the course efficiently.
What's included
6 videos2 readings
In this module, we will delve into the basics of machine learning. You will start with an introduction to artificial intelligence and its core concepts. The module will then explore the essentials of machine learning and provide an overview of different machine learning models, laying the groundwork for more advanced topics.
What's included
3 videos
In this module, we will explore the foundational concepts of deep learning. You will gain insights into deep learning models, their performance evaluation, and the evolution from perceptrons to neural networks. The module also covers various types of neural network layers, activation functions, loss functions, and optimization techniques, providing a robust understanding of deep learning frameworks.
What's included
9 videos1 assignment
In this module, we will focus on evaluating machine learning models. You will learn about underfitting and overfitting, and how to mitigate these issues. The module will also cover the train-test split method and its importance in model evaluation, along with various resampling techniques to manage imbalanced datasets effectively.
What's included
3 videos
In this module, we will guide you through the process of constructing a neural network from scratch. You will start with data preparation and model initialization and proceed to implement essential functions such as forward and backward propagation. The module also covers training and evaluation techniques to help you build and assess your neural network model effectively.
What's included
12 videos1 assignment
In this module, we will explore the concept of tensors and their significance in PyTorch. You will learn about the relationship between tensors and computational graphs and gain hands-on experience with tensor operations through coding exercises. This module aims to equip you with the skills to apply tensors in real-world machine learning scenarios.
What's included
3 videos
In this module, we will introduce you to PyTorch modeling. You will learn to build and train models from scratch, including linear regression. The module covers batch processing, datasets, and dataloaders to manage data effectively. You will also explore techniques for saving, loading, and optimizing models, including hyperparameter tuning, to enhance your machine learning workflow.
What's included
15 videos1 reading2 assignments
Instructor
Offered by
Why people choose Coursera for their career
Recommended if you're interested in Data Science
DeepLearning.AI
University of Colorado Boulder
Google Cloud
Johns Hopkins University
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy