Peking University

生物学概念与途径

饶毅

Instructor: 饶毅

Sponsored by FutureX

4,081 already enrolled

Gain insight into a topic and learn the fundamentals.
5.0

(14 reviews)

Intermediate level
Some related experience required
39 hours to complete
3 weeks at 13 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
5.0

(14 reviews)

Intermediate level
Some related experience required
39 hours to complete
3 weeks at 13 hours a week
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

5 assignments

Taught in Chinese (Simplified)

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 13 modules in this course

本节课程对《生物学概念和途径》的内容、目的、要求进行了理念性的介绍。这门课由饶毅、王晓东、施一公、谢晓亮、邓兴旺、汤超、何川、鲁白、顾红雅教授主讲。课程要求学生读原始文献,让学生了解生物学概念的产生,理解实验设计,分析和思考。

What's included

1 video

他孤立于当时的科学界,做出奠基性突破却终生未被学界承认;他的工作几十年后尚不为同一学科第二重要的科学家、诺贝尔奖得主所理解;他发现的貌似简单的理论,即使在今天多数学过的人,都没意识到其智力高度;他不是为利益做研究的纯粹科学家,身后却被疑造假,再遭遇不公。这位孤独的天才,就是自称为“实验物理学教师”的遗传学之父:孟德尔。饶毅教授作为全世界了解孟德尔最多的活着的人,故事性地介绍了孟德尔的生前身后的故事、发表的论文,重点介绍了孟德尔做的研究工作,包括其如何选择试验材料,研究的分工安排,解决途径和思维方法等。

What's included

6 videos1 reading1 peer review

今天,我们知道遗传的物质基础存在于细胞核的染色体上。染色体是怎么发现的?如何证明染色体是遗传物质?十九世纪,在孟德尔遗传规律未被科学界重视情况下,伴随细胞学说形成发展,细胞核、染色体与遗传的关系已被提出。在前人工作基础上,摩尔根及他的学生Alfred Sturtevant、Calvin Bridges与Hermann J. Muller等以果蝇为模式生物,证明基因存在于染色体,系统研究染色体与遗传关系,对遗传染色体学说做出重要贡献,影响美国和世界的科学发展。获得过诺贝尔奖的果蝇相关研究从1933年的摩尔根至2011年Jules Hoffman,还可能有精彩的生物钟分子机理获奖。常有人认为可告别果蝇,却有许多科学家认为果蝇仍大有可为。果蝇百年研究直接对遗传、演化、发育生物学具有关键推动作用,对神经生物学具重要作用,对细胞生物学、免疫学也有作用,而通过遗传学推动了多个基础、应用学科的发展,不断给人类以启示。

What's included

5 videos1 reading1 peer review

基础研究通过推进人类认知进而可能解决人类面临的问题,而人类面临的问题通过刺激科学研究也可能推进人类认知。不同研究途径的科学前沿间的意外交汇往往使我们对问题的认识达到质的飞跃。本次课程讨论的基因物质基础的研究历程,即对遗传科学问题的好奇与对肺炎医疗问题的需求合力推动人类认知的典型实例。Friedrich Miescher、Albrecht Kossel、Phoebus Levene、Torbjörn Caspersson等从生物化学角度分析染色体的化学成分。Gregor Mendel、Walther Flemming、Theodor Boveri、Thomas Morgan等着力于染色体生物功能的研究,并由此诞生与发展了遗传学。而对肺炎致病性细菌流行病学研究中,Fred Griffith、Oswald Avery、Colin MacLeod、Maclyn McCarty等逐步揭示DNA为遗传信息的载体。以上异途同归的研究刺激了Rosalind Franklin、Maurice Wilkins、James Watson、Francis Crick对DNA结构的解析,分子生物学也随之诞生。

What's included

8 videos1 reading1 peer review

胚胎诱导的研究始于从罕见现象了解常见规律,从不寻常现象了解正常规律。预成论与后成论的古老争论,在实验胚胎学兴起之后,激发了人们对早期细胞发育是完全独立自主还是相互作用研究的兴趣。Wilhelm Roux以两栖类动物的胚胎为模型,为胚胎自分化还是依赖性分化的研究启迪了思路、开创了途径。Hans Driesch用海胆胚胎做了更严格的实验与分析。二人的研究创造了发育生物学第一次高峰。Hans Spemann与Hilde Mangold的胚胎诱导研究,类比了Warren Lewis的实验设计,采纳了Hans Petersen的质疑问题,加之Spemann与Lewis对晶状体诱导研究的铺垫,最终采用了Gustav Born、Ross Harrison的实验方法,通过异种胚胎移植实验获得结果提示神经管为背唇诱导产生。胚胎诱导分子机理的研究于20世纪30年代遭遇技术困难,直至80、90年代才获突破。胚胎诱导的概念不仅成为核心问题主导几十年的发育生物学研究,也影响人们思考细胞相互作用所参与的其他生物学过程。

What's included

7 videos1 reading1 peer review

对发育基因调控的研究,贡献主要源于美国遗传学家摩尔根实验室,从1910年起在研究中就发现了影响发育的突变基因。发育生物学研究有三个高潮:第一个高潮在十九世纪后期,德国的Wilhelm Roux等开创实验胚胎学;第二个高潮在1920年代以德国Hans Spemann为代表的科学家,用两栖类研究胚胎诱导;第三个高潮仍在德国:1980年前后在海德堡工作的德国女科学家Christiane Nüsslein-Volhard和美国科学家Eric Wieschaus从遗传突变体筛选调控果蝇发育的大批基因,使果蝇研究光彩绚丽。本次课程以果蝇发育研究为主线,介绍发育中的基因调控,特别是同源异形盒(homeobox)发现的途径,使发育生物学与分子生物学两个学科的重要领域在机理上得以汇合:调节基因转录可以调控发育。

What's included

4 videos1 reading1 peer review

还原与整合是生命科学研究的两个基本方法,对现象的还原与描述占据了大多数的内容,而对于整合的研究则相对较少。本次课程以色觉形成的发现过程为例,先介绍了早期人们对于光感和视觉的认识以及发现视网膜上视杆细胞和视锥细胞分别参与视觉信号感知,然后详细介绍了对光的强弱有反应的视紫红质,以及对三种不同波长的光有偏好的色觉敏感蛋白的发现以及信号转导过程,总结了从感光分子的发现到色觉形成的整合过程。

What's included

6 videos1 peer review

本次课程继续通过对David Hubel和Torsten Wiesel在视觉加工方面的重要工作的介绍来说明整合的方法对生命科学研究和发现的重要性。从介绍Hubel和Wiesel研究视皮层的研究背景,到二人对简单加工视皮层细胞的记录到提出投射模型的过程,及他们提出神经系统发育关键时期学说的过程,同时简要介绍了视觉的高级功能中对人脸识别对研究发现。最后,对生命科学研究的未来进行了展望。

What's included

5 videos1 reading1 peer review

生物演化没有方向,而生命世界从古至今的变化却呈现从无序到有序、从同质到异质、从简单到复杂、从单细胞到多细胞的趋势。什么样的修饰能被遗传下去?又是什么因素在驱动这样的遗传?本节课程围绕这2个问题,讨论了突变、自然选择、遗传漂变、个体迁徙或迁移、不均等交配、中性选择等驱动力以及它们的相互作用。

What's included

7 videos1 reading1 assignment

伴随人口的指数性增长,中国乃至世界的粮食安全面临着严峻挑战,耕地面积萎缩、灌溉用水减少、全球气候变暖、水体富营养化等一系列问题逐步暴露。保障粮食安全根本出路在于发展现代农业生物技术。结合具体科研、产业实例,本次课程深入浅出介绍了常见的现代农业技术,如全基因组分子标记辅助设计育种技术、双单倍体快速全基因组纯化稳定育种技术、定点突变改良作物技术、转基因技术、新型杂交育种技术等。重点讲解了目前热议的转基因技术,包括该技术的研究历史、发展现状、技术原理、生产流程及黄金水稻等诸多实例,从转基因植株的获得、田间试验、政府审批至推向市场。

What's included

4 videos1 reading1 assignment

化学生物学是现代化学与生命科学交叉的新兴领域。生物大分子本质是化学分子,生命过程亦遵循着物理、化学法则。本次课程主要围绕蛋白质、核酸的各级结构,以化学的视角,审视这些生物大分子的分子基础,给生物大分子以全新的视角。另介绍了2015年诺贝尔化学奖的工作——DNA修复机理。

What's included

6 videos1 reading1 assignment

2009年5月13日,郝克菲德在美国科学进步协会以“下一轮创新革命”为题做了演讲,简短但深刻地阐述了刚刚拉开帷幕的第三次生命科学的革命,即工程和物质科学与生命科学强有力地交叉、融合而带来的革命。本次课程主要从物理学家的视角讲解现代生命科学及其发展趋势。回顾科学革命,分别介绍经典物理学的起源,工业革命和信息革命,重点讲解了第三次生命科学革命,以生物系统的适应性、生物网络、基于网络的药物设计以及细胞命运转换为例,强调学科的交叉和定量的重要性。

What's included

4 videos1 reading1 assignment

脑科学是人类认识自我的学问,是当今世界有待研究的重要科学问题。本次课程概括性介绍了神经和认知科学研究的主要问题,并重点介绍了学习记忆的重要发现历程。从迄今为止神经科学中出现的理论,如神经元学说等,到基因编辑、成像技术以及光遗传学等方面的最新进展对脑科学发展的影响。同时,以鲁白教授实验室在BNDF对学习记忆方面的基础研究发现与临床应用为例,介绍了从基础到临床的研究过程。最后,本次课程还介绍了神经科学发现在深部脑激活以及人机互动方面的应用。

What's included

4 videos1 reading1 assignment

Instructor

饶毅
Peking University
1 Course4,081 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Health

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy