O objetivo deste curso é aproveitar a flexibilidade e a facilidade de uso do TensorFlow 2.x e do Keras para criar, treinar e implantar modelos de machine learning. Você aprenderá sobre a hierarquia da API TensorFlow 2.x e conhecerá os principais componentes do TensorFlow nos exercícios práticos. Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você aprenderá a projetar e criar um pipeline de entrada de dados do TensorFlow 2.x. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash.
Intro to TensorFlow em Português Brasileiro
This course is part of Machine Learning with TensorFlow on Google Cloud em Português Brasileiro Specialization
Instructor: Google Cloud Training
Sponsored by FutureX
(23 reviews)
Details to know
Add to your LinkedIn profile
12 assignments
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 6 modules in this course
Este curso é uma introdução ao TensorFlow 2.x, que incorpora a facilidade de uso do Keras para a criação de modelos de machine learning. Abordaremos o design e a criação de um pipeline de dados de entrada do TensorFlow 2.x, a criação de modelos de machine learning com essa ferramenta e com o Keras, a melhoria da acurácia desses modelos e a geração dos modelos para uso em escala.
What's included
2 videos
Apresentaremos o novo paradigma do TensorFlow 2.x. Você aprenderá sobre a hierarquia da API TensorFlow e conhecerá os principais componentes do TensorFlow, os tensores e as variáveis com exercícios práticos.
What's included
5 videos1 reading3 assignments2 app items1 discussion prompt
Mostraremos como trabalhar com conjuntos de dados e colunas de atributos. Você terá uma experiência prática com o carregamento de dados CSV, matrizes numpy com tf.data.Dataset, dados de texto e imagens usando o tf.Data.Dataset e com a criação de colunas de atributos numéricas, categóricas, em bucket e com hash.
What's included
10 videos1 reading3 assignments6 app items1 discussion prompt
Neste módulo, você aprenderá a escrever modelos do TensorFlow com a API Keras Sequential. Mas, antes disso, falaremos sobre funções de ativação, perda e otimização. Em seguida, você conhecerá a API Keras Sequential para aprender a criar modelos de aprendizado profundo com ela. Você também verá como implantar o modelo para previsão na nuvem.
What's included
5 videos1 reading2 assignments3 app items
A API de modelo Sequential é ideal para o desenvolvimento de modelos de machine learning na maioria dos casos, mas também tem limitações. Por exemplo, ela não é simples de definir modelos com várias fontes de entrada, produzir muitos destinos de saída ou modelos que reutilizam camadas. A API Keras Functional é uma forma de criar modelos mais flexíveis do que a API tf.keras.Sequential e é capaz de processar modelos com topologia não linear, com camadas compartilhadas e com várias entradas ou saídas. Além disso, ela oferece uma maneira mais flexível de definir os modelos. Especificamente, ela permite a definição de vários modelos de entrada e saída e que compartilham camadas. Mais do que isso, com ela é possível definir grafos de rede acíclicos ad hoc. Geralmente, a ideia principal é que um modelo de aprendizado profundo seja um grafo acíclico direcionado (DAG) de camadas. Portanto, a API Functional é uma forma de criar grafos de camadas. Também mostraremos como a regularização pode ajudar no desempenho do modelo.
What's included
6 videos1 reading3 assignments1 app item
Resumiremos os principais tópicos sobre o TensorFlow abordados no curso até agora. Revisitaremos o principal código do TensorFlow, a API tf.data, as APIs Keras Sequential e Functional e o escalonamento dos modelos de machine learning com o AI Platform do Cloud.
What's included
1 video1 reading1 assignment
Instructor
Offered by
Why people choose Coursera for their career
Recommended if you're interested in Data Science
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy