Chevron Left
Back to Introduction to Data Science in Python

Learner Reviews & Feedback for Introduction to Data Science in Python by University of Michigan

4.5
stars
27,057 ratings

About the Course

This course will introduce the learner to the basics of the python programming environment, including fundamental python programming techniques such as lambdas, reading and manipulating csv files, and the numpy library. The course will introduce data manipulation and cleaning techniques using the popular python pandas data science library and introduce the abstraction of the Series and DataFrame as the central data structures for data analysis, along with tutorials on how to use functions such as groupby, merge, and pivot tables effectively. By the end of this course, students will be able to take tabular data, clean it, manipulate it, and run basic inferential statistical analyses. This course should be taken before any of the other Applied Data Science with Python courses: Applied Plotting, Charting & Data Representation in Python, Applied Machine Learning in Python, Applied Text Mining in Python, Applied Social Network Analysis in Python....

Top reviews

YH

Sep 28, 2021

This is the practical course.There is some concepts and assignments like: pandas, data-frame, merge and time. The asg 3 and asg4 are difficult but I think that it's very useful and improve my ability.

CB

Feb 6, 2023

The assessments, quizzes, and course coverage are quite good. The main points are covered, although it does not cover everything. Additionally, it provides opportunities to learn and conduct research.

Filter by:

3801 - 3825 of 5,948 Reviews for Introduction to Data Science in Python

By Kai P H

•

Apr 22, 2019

For me, this was a difficult course in which I learned a lot. I did not find the materials (videos etc.) provided in the course so helpful, but the assignments you get for your own programming are very close to real world problems and will give you real experience. So you will need some other material to learn, I recommend the book "Python Data Science Handbook" by Jake VanderPlas.

By Kedar J

•

Jun 27, 2018

Unlike other courses the lectures are packed with new concepts so much that you can't miss even a minute to understand it. The assignments are fairly challenging. The only part frustrating was working with the grader. Often it won't work and you are left wondering what went wrong without a great explanation. Overall great first course in the series. Looking forward to the next one.

By Aibek C

•

Mar 2, 2019

It was a challenging course as a lot of things in the assignments you have to learn yourself. But it was the right way to do as during the work often times one will get stuck on something without any step-by-step directions on how to solve certain issues. The only thing I didn't like about the course is a bit unclear questions in the assignments which took some time to figure out.

By Hrituraj S

•

Jul 19, 2017

Overall, I liked the course but there were some flaws (not too big ones but still worth mentioning) - The way things were explained seemed more like just giving information about something rather than explaining it well (of course at times!). Exercises were really very good as they promoted individual learning more than just depending on what was taught. Recommended for beginners/

By Pieter C

•

May 31, 2020

This course was tough but I learnt a lot. I really wish that they posted the answers for how the lecturers would approach the questions (even if it was only after you passed the quiz. I walk away from these quizzes not always sure if I made a bad plan that works or if my solutions is good/elegant. This would be very useful especially for us who are early in our coding careers.

By Sarah H H

•

Dec 11, 2018

I really enjoyed this course, but i am so glad I came prepared and had completed other Data Science tracks on other online sites (Codecademy, Dataquest, DataCamp, etc). I had to put all the skills learned elsewhere to good use in this course. The course was challenging--which is why I wanted to take it! I feel like I had to problem-solve, code, and work with data at a high level.

By Aditi V

•

Jun 4, 2020

The material is great, but a tad quick-paced. A little more detail into some sections could be helpful. My biggest grievance with it is that the notebooks and autograder use an extremely outdated version of Pandas and NumPy, which leads to a lot of the official documentation being unhelpful. You can fix the problem within the notebooks but the issue persists with the autograder.

By Ahmad M

•

Feb 21, 2021

Great professor to listen to and pretty good videos but some assignment questions super challenging and very different from the examples. First three quizzes were weird as they were mostly simple but took 24 hours to output grade. Other than these two complaints, good course to understand how data manipulation works and to learn more about Python's data specific libraries.

By Andrew K

•

Feb 18, 2017

This course has greatly helped my understanding of not only some python, but pandas as well. My only suggestion to anyone that wants to take this course is to make sure to allocate as much time as possible to it. They give estimates as to how long it should take you to complete a week's worth of material, but this can vary highly from person to person. Overall, I enjoyed!

By Janina d W

•

May 28, 2018

Despite having some basic python and pandas skills, I have learned a lot with course. The assignments are challenging and you need to do a lot of self-study, but I find that it is a good way to learn. The only reasons I am not giving a five-star rating is that some of the questions in the assignments (especially week 4) are very unclear, and can definitely be improved.

By Swati s

•

Aug 9, 2020

The knowledge offered in this course is very useful and to the point. However, I found it quite fast , as the students enrolled in this course has no idea of data science so it is quite difficult for us to understand the material at such a pace. Apart from this , the quality of the material was excellent and helpful.

Looking forward to enroll myself in other courses too.

By Raunak T

•

May 2, 2020

I think Hypothesis testing was not given a lot of time and was barely skimmed through. Another problem was the auto grader itself which was quite painful to work with. I think Coursera should have the latest version of packages on their server as without that there were always inconsistencies with the way my offline python responded vs how the online server responded.

By James T

•

Nov 29, 2018

Excellent Intro course. Videos are short and to the point. Does require you to have familiarity with Python and to research on your own to complete the assignments. In that regard, it may be different from other online courses, but I did find the process helpful in gaining a better handle on Pandas data handling. Additional readings are also relevant and helpful.

By Nav K

•

Jun 12, 2020

For a beginner I found this course quite fast paced. One must have a good understanding of pandas and numpy functionality for doing the assignments. The difficulty level of assignments is relatively high to the amount of content being covered in the course itself. I feel more videos should be added to understand the concepts upto the depth of questions being asked.

By José F Q

•

Oct 7, 2020

Very nice introductory course, I think it would have been good to include a brief introduction to visualization. But the statistics concepts and theory were very well explained plus the assignments were designed to apply all of the learned concepts, I would have liked to see more practical exercises done by the instructor as I didn't have a programming background.

By Jean K J

•

Mar 13, 2018

Assignments are really tough which will make you do a lot of research and self learning to come up with the desired answers. The pace of the lectures is too quick and hence the depth is lost at times. Will have to do additional research to understand the concepts clearly . Overall, a good course to understand the introductory concepts to the world of Data Science

By Christian L

•

Oct 25, 2018

Value of the course is mostly about personal research and work to complete weekly assignments (whose allocated time is vastly under-estimated). There are some useful examples in the videos but the course would benefit from developing a more explanatory teaching framework to understand and navigate Python. TAs were awesome to support and coach during assignments.

By Hugo S

•

May 26, 2018

The class material was very good and the assignment improved the understanding.

The only negative is the graders for some of the assignment do not always provide useful feedback. Thankfully posts from Stephanie Greene (a TA) in the discussion Forum provided helpful automated testers that often provided useful clues on the specific answers the grader was expecting

By Shrinidhi V

•

Jul 1, 2020

I found the assignments a bit challenging since I was a newcomer to the concept of exploratory data analysis. I would like the background of the lectures to be taken off and get them replaced with a white one in order to avoid any possible distractions. This was one thing I observed with my focus span after having taken multiple courses on Coursera. Thank you.

By Mark M

•

Jun 8, 2017

I really like this approach of the specialization. Data wrangling with pandas is essential. Also referencing some controversial discussions reagarding the limits and problems we are facing as data scientists is appreciated.

However one star less as as there is no feedback on the submissions. So I really don't know what was good and how can I improve my codings.

By Peter S

•

Jan 2, 2017

Great course for data preparation for ML which is sometimes neglected in other courses. Great instructor. Useful assignments. Assignments require research on your own which is good. I would recommend to maybe make the course longer and cover more topics (in-depth string processing etc.), because it felt a bit short. Thanks Dr. Brooks for putting this together.

By Michael D

•

Apr 12, 2020

Bon cours. L'indication de difficulté "intermédiaire" correspond aux prérequis pour réussir les exercices avec Python (ne pas être un total novice). Le plus frustrant est l'auto-grader qui n'est pas assez clair quand aux parties des exercices qu'il faudrait corriger, ou bien qui n'aime pas certains codes pour ariver au même résultat. Hâte de voir la suite !

By Omar E R L

•

Dec 16, 2019

Fue uno de los cursos más retadores, pero más satisfactorios que he tenido la oportunidad de tomar en una plataforma en línea. Sí, requiere mucha investigación por parte del usuario y algunos de sus incisos requieren mayor dedicación que un curso introductorio, pero las recompensas se vuelven sumamente fortuitas al final. ¡Saludos y éxitos desde El Salvador!

By FLAVIO M R I

•

Dec 13, 2019

O curso apresenta de maneira objetiva os conceitos das estruturas de dados com Python, utilizando aulas bem estruturadas, excelentes exemplos e tarefas desafiadoras. Poderia ter um material de apoio um pouco mais elaborado, como alguns resumos dos comandos apresentados em cada aula, para facilitar a execução das tarefas e organização das ideias apresentadas.

By Tristan D H

•

Feb 1, 2019

Excellent introduction to the subject with comprehensive example code and solid assignments. I personally avoided most of the optional writing prompts as the anonymous feedback received from other students on the first such assignment was not constructive. I would recommend the optional readings and outside information though, it is quite thought provoking.