University of Alberta

Sample-based Learning Methods

Martha White
Adam White

Instructors: Martha White

Sponsored by EdgePoint Software

34,350 already enrolled

Gain insight into a topic and learn the fundamentals.
4.8

(1,233 reviews)

Intermediate level

Recommended experience

Flexible schedule
Approx. 22 hours
Learn at your own pace
90%
Most learners liked this course
Gain insight into a topic and learn the fundamentals.
4.8

(1,233 reviews)

Intermediate level

Recommended experience

Flexible schedule
Approx. 22 hours
Learn at your own pace
90%
Most learners liked this course

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

5 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Reinforcement Learning Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 5 modules in this course

Welcome to the second course in the Reinforcement Learning Specialization: Sample-Based Learning Methods, brought to you by the University of Alberta, Onlea, and Coursera. In this pre-course module, you'll be introduced to your instructors, and get a flavour of what the course has in store for you. Make sure to introduce yourself to your classmates in the "Meet and Greet" section!

What's included

2 videos2 readings1 discussion prompt

This week you will learn how to estimate value functions and optimal policies, using only sampled experience from the environment. This module represents our first step toward incremental learning methods that learn from the agent’s own interaction with the world, rather than a model of the world. You will learn about on-policy and off-policy methods for prediction and control, using Monte Carlo methods---methods that use sampled returns. You will also be reintroduced to the exploration problem, but more generally in RL, beyond bandits.

What's included

11 videos3 readings1 assignment1 programming assignment1 discussion prompt

This week, you will learn about one of the most fundamental concepts in reinforcement learning: temporal difference (TD) learning. TD learning combines some of the features of both Monte Carlo and Dynamic Programming (DP) methods. TD methods are similar to Monte Carlo methods in that they can learn from the agent’s interaction with the world, and do not require knowledge of the model. TD methods are similar to DP methods in that they bootstrap, and thus can learn online---no waiting until the end of an episode. You will see how TD can learn more efficiently than Monte Carlo, due to bootstrapping. For this module, we first focus on TD for prediction, and discuss TD for control in the next module. This week, you will implement TD to estimate the value function for a fixed policy, in a simulated domain.

What's included

6 videos2 readings1 assignment1 programming assignment1 discussion prompt

This week, you will learn about using temporal difference learning for control, as a generalized policy iteration strategy. You will see three different algorithms based on bootstrapping and Bellman equations for control: Sarsa, Q-learning and Expected Sarsa. You will see some of the differences between the methods for on-policy and off-policy control, and that Expected Sarsa is a unified algorithm for both. You will implement Expected Sarsa and Q-learning, on Cliff World.

What's included

9 videos3 readings1 assignment1 programming assignment1 discussion prompt

Up until now, you might think that learning with and without a model are two distinct, and in some ways, competing strategies: planning with Dynamic Programming verses sample-based learning via TD methods. This week we unify these two strategies with the Dyna architecture. You will learn how to estimate the model from data and then use this model to generate hypothetical experience (a bit like dreaming) to dramatically improve sample efficiency compared to sample-based methods like Q-learning. In addition, you will learn how to design learning systems that are robust to inaccurate models.

What's included

11 videos4 readings2 assignments1 programming assignment1 discussion prompt

Instructors

Instructor ratings
4.7 (216 ratings)
Martha White
University of Alberta
4 Courses100,709 learners
Adam White
University of Alberta
4 Courses100,709 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

4.8

1,233 reviews

  • 5 stars

    82.25%

  • 4 stars

    13.37%

  • 3 stars

    2.83%

  • 2 stars

    0.56%

  • 1 star

    0.97%

Showing 3 of 1233

MC
4

Reviewed on Jun 29, 2020

NH
4

Reviewed on Oct 15, 2019

PS
5

Reviewed on Aug 1, 2023

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy