Johns Hopkins University
Data Science Decisions in Time:Sequential Hypothesis Testing
Johns Hopkins University

Data Science Decisions in Time:Sequential Hypothesis Testing

Thomas Woolf

Instructor: Thomas Woolf

Sponsored by Coursera Learning Team

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

24 hours to complete
3 weeks at 8 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

24 hours to complete
3 weeks at 8 hours a week
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

11 assignments

Taught in English
Recently updated!

August 2024

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Data Science Decisions in Time Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 6 modules in this course

We extend Wald's ideas for sequential hypothesis testing to a new -- and closely related -- problem. In this second course we evaluate how best to choose from a set of hypothesis for sequentially arriving data. This has many modern applications, for example how best to set a price for a new product, what is the best therapy for a patient, how to determine the rare events in a stream of visual images and many many more. We begin by examining a type of visual search for the 'odd one out' and then build from that first week.

What's included

3 videos1 reading2 assignments

Searching within an ordered hierarchical setting can improve the search. But, it is not immediately obvious how to setup the data structure to support this type of search. In this part of the course we explore how to define a biased walk, based on information, to quickly find an 'odd one out'. From this concept of walking along a tree structure, we then move into thinking about how to best setup that tree structure.

What's included

3 videos1 reading2 assignments

Many real-world applications have extremely large action and/or hypothesis spaces. For the application of Chernoff's ideas there has to be a way to apply the algorithms quickly at scale. In this set of material we examine how approximations may work and how Chernoff's ideas have been extended to different types of problems.

What's included

3 videos1 reading2 assignments

The ideas that we have been exploring can also be applied to data slices collected at disparate windows in time, can be applied to improving MRI scans and can be applied to molecular protein design. These applications all share the concept of using sequential hypothesis testing to improve understanding. In addition, all three of these ideas are under active code development.

What's included

3 videos1 reading2 assignments

In our fifth week we explore how to move beyond the 'odd one out' and into multiple hypothesis testing for streams of data. This could be for setting a dosage level on a medication or on how to identify objects in a set of images.

What's included

5 videos1 reading2 assignments

What's included

1 assignment

Instructor

Thomas Woolf
Johns Hopkins University
4 Courses481 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Computer Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy