Packt
Intermediate Data Analysis Techniques with Pandas
Packt

Intermediate Data Analysis Techniques with Pandas

Sponsored by Syrian Youth Assembly

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

12 hours to complete
3 weeks at 4 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

12 hours to complete
3 weeks at 4 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Utilize advanced data selection and column operations techniques in Pandas.

  • Employ various filtering techniques to enhance data extraction precision.

  • Apply Pandas methods proficiently to clean and prepare data effectively.

  • Manage and manipulate MultiIndex and text data within Pandas for comprehensive data handling.

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

8 assignments

Taught in English
Recently updated!

August 2024

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Data Analysis with Pandas and Python Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 7 modules in this course

In this module, we will explore the foundational concepts of working with DataFrames in Pandas, starting with a comparison of Series and DataFrame methods and attributes. You will learn to select and manipulate both single and multiple columns, and add new columns to your DataFrames. We will cover the use of value_counts for column analysis and strategies for handling missing values. Additionally, you'll master data type conversions using the astype method, sorting DataFrames with sort_values and sort_index, and ranking values within columns using the rank method.

What's included

14 videos2 readings1 assignment

In this module, we will dive into filtering data within DataFrames. You'll be introduced to the dataset and learn memory optimization techniques. We will cover filtering rows based on conditions and using logical operators like AND (&) and OR (|). Advanced filtering methods such as isin, isnull, and notnull will be explored. You'll also learn to filter data within a range using the between method, identify and handle duplicates with duplicated and drop_duplicates, and find and count unique values using unique and nunique methods.

What's included

10 videos1 assignment

In this module, we will explore essential data extraction techniques in Pandas. You'll start with an introduction to the dataset and learn to set and reset indices using set_index and reset_index methods. We will cover retrieving rows by index positions with iloc and by labels with loc, and understand the second arguments for precise data retrieval. You'll learn to overwrite individual and multiple values, rename index labels or columns, and delete rows or columns. Advanced extraction techniques like sampling with the sample method, extracting specific rows with nsmallest and nlargest, conditional filtering with where, and executing functions across DataFrame rows or columns with apply, will also be covered.

What's included

13 videos1 assignment

In this module, we will focus on working with text data in Pandas. You'll start with an introduction to the dataset and learn to use common string methods for text data manipulation. We will cover filtering DataFrame rows using string methods and applying these methods to DataFrame indices and columns. You'll master the split method to divide text data into multiple parts and enhance your skills with additional practice exercises. Finally, you'll learn to customize text splitting using the expand and n parameters of the split method for more detailed analysis.

What's included

7 videos1 assignment

In this module, we will explore the advanced capabilities of MultiIndex in Pandas, starting with an introduction to its concepts. You'll learn to create and manage MultiIndex DataFrames for complex data grouping and analysis. We will cover techniques to extract and rename index level values for clarity, and how to sort and extract specific rows for better data organization. Additionally, you'll master methods like transpose, stack, and unstack to reshape DataFrames, and apply pivot, melt, and pivot_table methods to reorganize and transform data efficiently.

What's included

12 videos1 assignment

In this module, we will delve into the GroupBy functionality in Pandas, starting with an introduction to its essential concepts for data aggregation. You'll learn to use the groupby method to group data and retrieve specific groups with the get_group method. We will explore various aggregation methods available on GroupBy objects and cover techniques for grouping data by multiple columns. Additionally, you'll master the agg method to apply multiple operations on grouped data and learn to iterate through groups for individual data processing.

What's included

7 videos1 assignment

In this module, we will explore essential techniques for merging DataFrames in Pandas. You'll begin with an introduction to various merging methods, followed by a detailed look at using the pd.concat function to concatenate DataFrames along a specified axis. We will cover left joins and the use of left_on and right_on parameters for specific column matching, as well as inner joins to combine DataFrames based on intersecting keys. Additionally, you'll learn about full-outer joins to merge DataFrames including all keys from both frames, and how to merge by indexes using left_index and right_index parameters. Finally, you'll be introduced to the join method as a simpler alternative for merging DataFrames.

What's included

10 videos1 reading2 assignments

Instructor

Packt - Course Instructors
Packt
375 Courses33,205 learners

Offered by

Packt

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy