Princeton University
Алгоритмы, часть I
Princeton University

Алгоритмы, часть I

Robert Sedgewick
Kevin Wayne

Instructors: Robert Sedgewick

Sponsored by Louisiana Workforce Commission

12,460 already enrolled

Gain insight into a topic and learn the fundamentals.
4.8

(78 reviews)

Intermediate level
Some related experience required
53 hours to complete
3 weeks at 17 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
4.8

(78 reviews)

Intermediate level
Some related experience required
53 hours to complete
3 weeks at 17 hours a week
Flexible schedule
Learn at your own pace

Skills you'll gain

Details to know

Assessments

10 assignments

Taught in Russian

See how employees at top companies are mastering in-demand skills

Placeholder

There are 13 modules in this course

Введение в алгоритмы, часть I.

What's included

1 video2 readings

Мы демонстрируем наш базовый подход к разработке и анализу алгоритмов через рассмотрение проблемы динамической связности. Мы представляем тип данных непересекающихся множеств и рассматриваем несколько вариантов его реализации (быстрый поиск, быстрое объединение, взвешенное быстрое объединение и взвешенное быстрое объединение со сжатием пути). Наконец, мы применяем тип данных непересекающихся множеств для решения проблемы перколяции из физической химии.

What's included

5 videos2 readings1 assignment1 programming assignment

В основе нашего подхода к анализу эффективности алгоритмов лежит научный метод. Начнем с вычислительных экспериментов для измерения времени выполнения наших программ. Мы применяем эти измерения для формирования гипотез об эффективности. Затем мы составляем математические модели, объясняющие поведение алгоритмов. Наконец, мы рассмотрим анализ использования памяти нашими программами на Java.

What's included

6 videos1 reading1 assignment

Мы рассмотрим два фундаментальных типа данных для хранения коллекций объектов: стек и очередь. Каждый из них реализуется с помощью односвязного списка или массива изменяющегося размера. Мы представим две продвинутые функции Java, упрощающие клиентский код: обобщенные коллекции и итераторы. Наконец, будут рассмотрены различные применения стеков и очередей, начиная от разбора арифметических выражений и заканчивая моделированием систем массового обслуживания.

What's included

6 videos2 readings1 assignment1 programming assignment

Мы познакомим вас с проблемой сортировки и интерфейсом Comparable Java. Мы изучим два элементарных метода сортировки (сортировку выбором и сортировку вставкой), а также разновидность одного из них — сортировку методом Шелла. Также мы рассмотрим два алгоритма для равномерного перемешивания массива. В завершение мы продемонстрируем применение сортировки на практике для вычисления выпуклой оболочки множества точек с помощью алгоритма сканирования Грэма.

What's included

6 videos1 reading1 assignment

Мы изучим алгоритм сортировки с объединением и покажем, что он позволяет отсортировать любой массив из n элементов с максимальным количество сравнений n lg n. Также будет рассмотрена нерекурсивная версия этого алгоритма («снизу вверх»). Мы докажем, что любой алгоритм сортировки, основанный на сравнении, в худшем случае должен выполнить не менее n lg n сравнений. Мы обсудим применение различных схем упорядочения сортируемых объектов и связанную с этим концепцию устойчивости.

What's included

5 videos2 readings1 assignment1 programming assignment

Мы изучим и реализуем алгоритм рандомизированной быстрой сортировки и проанализируем его эффективность. Кроме того, рассмотрим рандомизированный быстрый выбор — вариант быстрой сортировки, находящий k-й наименьший элемент за линейное время. В завершение мы рассмотрим 3-направленную быструю сортировку — вариант быстрой сортировки, особенно хорошо работающий при наличии дублирующихся ключей.

What's included

4 videos1 reading1 assignment

Мы представляем тип данных «приоритизированная очередь» и его эффективную реализацию с помощью структуры данных «бинарная куча». Эта реализация также является основой эффективного алгоритма кучевой сортировки. В завершение мы познакомимся с применением приоритизированных очередей. В частности, мы смоделируем движение объекта, состоящего из n частичек, по законам упругих столкновений.

What's included

4 videos2 readings1 assignment1 programming assignment

Мы зададим API для таблиц символов (также известных как ассоциативные массивы, карты или словари) и опишем две элементарные реализации с использованием отсортированного массива (бинарный поиск) и неупорядоченного списка (последовательный поиск). Если ключи имеют тип Comparable, мы зададим расширенный API, включающий дополнительные методы минимума и максимума, нижнего и верхнего предела, ранжирования и выбора. Для разработки эффективной реализации этого API мы изучим структуру данных «бинарное дерево поиска» и проанализируем ее эффективность.

What's included

6 videos1 reading1 assignment

В этой лекции наша цель состоит в создании таблицы символов с гарантированной логарифмической эффективностью поиска и вставки (а также множества других операций). Мы начнем с рассмотрения 2-3-деревьев, которые легко анализировать, но сложно реализовать. Затем рассмотрим красно-черные бинарные деревья поиска, которые послужат новым способом реализации 2-3-деревьев в виде бинарных деревьев поиска. Наконец мы представим B-деревья — обобщение 2-3-деревьев, широко применяющееся при реализации файловых систем.

What's included

3 videos2 readings1 assignment

Мы начнем с поиска в 1-мерных и 2-мерных диапазонах, цель которого — найти все точки в заданном 1-мерном или 2-мерном диапазоне. Для выполнения данной задачи рассмотрим k-мерные деревья — естественное обобщение БДП, ключи которого — точки на плоскости (или в пространствах более высокого порядка). Также рассмотрим проблемы пересечений, когда требуется найти все пересечения среди множества отрезков или прямоугольников.

What's included

5 videos1 reading1 programming assignment

Вначале мы опишем желательные свойства хэш-функции и ее реализацию в Java, включая фундаментальное допущение о равномерности хэширования, определяющее потенциальную успешность хэширования. Затем рассмотрим две стратегии реализации хэш-таблиц — раздельное связывание цепочками и линейное исследование. Обе стратегии имеют постоянную по времени эффективность поиска и вставки при удовлетворении допущения о равномерности хэширования.

What's included

4 videos2 readings1 assignment

Рассмотрим различные практические области применения таблиц символов, включая множества, клиенты словарей, клиенты индексирования и разреженные векторы.

What's included

4 videos1 reading

Instructors

Instructor ratings
4.8 (15 ratings)
Robert Sedgewick
Princeton University
7 Courses1,885,859 learners
Kevin Wayne
Princeton University
5 Courses1,839,785 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Computer Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy