University of Maryland, College Park
Cómo manejar datos faltantes
University of Maryland, College Park

Cómo manejar datos faltantes

Sponsored by Louisiana Workforce Commission

Gain insight into a topic and learn the fundamentals.
17 hours to complete
3 weeks at 5 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
17 hours to complete
3 weeks at 5 hours a week
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

21 assignments

Taught in Spanish

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 5 modules in this course

Se requieren las ponderaciones para expandir una muestra y transformarla en una población. Para lograrlo, es posible que las ponderaciones corrijan los errores de cobertura en el marco del muestreo, ajusten la no respuesta y reduzcan las varianzas de los estimadores al incorporar covariables. Se indican en el módulo 1 la serie de pasos que se deben realizar.

What's included

7 videos7 readings7 assignments

Los pasos específicos para realizar ponderaciones incluyen computar ponderaciones base, efectuar ajustes si hay casos de cuya elegibilidad no estamos seguros, ajustar para no respuestas y usar covariables para calibrar la muestra para los controles de población externos. Brindamos información detallada específica sobre los pasos generales.

What's included

6 videos6 readings5 assignments

El software es crucial a la hora de implementar los pasos, pero el sistema R es una fuente excelente de rutinas gratuitas. En este módulo, se hablará de diversos paquetes en R que incluyen sampling, survey y PracTools, que permiten seleccionar muestras y computar ponderaciones.

What's included

6 videos5 readings4 assignments

En la mayoría de las encuestas, se encontrarán elementos para los que los respondedores no brindarán información, aunque sí proporcionó datos suficientes en el instrumento de recopilación de datos para considerarlo “completo”. Si solo se retuvieran los casos con todos los elementos completados cuando se ajusta un modelo, se excluirían varios casos del análisis. Imputar los elementos faltantes evita desestimar los casos faltantes. En este módulo, tratamos métodos para hacer la imputación y para reflexionar sobre los efectos de las imputaciones en los errores estándar.

What's included

6 videos5 readings5 assignments

Resumimos brevemente los métodos de ponderación e imputación que tratamos en el curso 5.

What's included

1 video1 reading

Instructor

Richard Valliant, Ph.D.
University of Maryland, College Park
5 Courses16,603 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy