SAS
Modeling Time Series and Sequential Data
SAS

Modeling Time Series and Sequential Data

Chip Wells
Ari Zitin
Danny Modlin

Instructors: Chip Wells

Sponsored by Louisiana Workforce Commission

Gain insight into a topic and learn the fundamentals.
Intermediate level
Some related experience required
11 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level
Some related experience required
11 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

19 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Analyzing Time Series and Sequential Data Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 8 modules in this course

In this module you get an overview of the courses in this specialization and what you can expect.

What's included

1 video1 reading

In this module, you get an idea of the scope of this course and learn to use the SAS Virtual Lab to do the practices in the course.

What's included

1 video2 readings1 app item

This module reviews fundamental time series ideas. You learn about the basic components of systematic variation in time series data and some simple model specifications, such as the autoregressive order one and the random walk. You also learn about Exponential smoothing models or ESMs, selecting a champion ESM, and generating forecasts on time series.

What's included

11 videos2 assignments

This module has four parts. The first part describes traditional models for stationary data: Auto Regressive Moving Average or ARMA models. The second part describes how the ARMA framework is generalized to accommodate trend variation. This involves integration, and results in the ARIMA model. The third part describes how the ARIMA model is adapted to handle seasonal variation in the data. The fourth and final part of the module introduces the dynamic regression or ARIMAX model and describes concepts related to identifying transfer function components and specifying ARIMAX models.

What's included

26 videos2 assignments1 app item

In this module, we combine the worlds of time series and Bayesian analysis. We begin with a brief review of Bayesian analysis. We then explore how to incorporate autoregressive, seasonal, and exogenous components in a Bayesian time series. We conclude with a discussion on Bayesian scoring and posterior predictive distributions.

What's included

10 videos8 assignments1 app item

In this module you learn how to use SAS machine learning tools to forecast individual time series. You learn to prepare the time series data for use with the machine learning tools, and how to build and score forecasting models using these tools. We focus on gradient boosting and recurrent neural network models and discuss when it would be useful to use these methods.

What's included

8 videos1 reading5 assignments1 app item

This module describes how forecasts that are generated externally to the forecasting system can be accommodated in SAS Visual Forecasting. We'll use external forecasts to create a combined or ensemble forecast that has the potential to improve forecast precision relative to the constituent, external forecasts. This module concludes with a discussion of hybrid model forecasts that combine traditional and machine learning approaches to forecasting.

What's included

9 videos1 assignment1 app item

What's included

1 assignment

Instructors

Chip Wells
SAS
3 Courses2,652 learners
Ari Zitin
SAS
2 Courses5,048 learners
Danny Modlin
SAS
1 Course1,348 learners

Offered by

SAS

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy