University of Manchester

Industrial Biotechnology

Prof. Nicholas Turner
Prof. Nigel Scrutton
Dr. Nick Weise

Instructors: Prof. Nicholas Turner

Sponsored by PTT Global Chemical

121,692 already enrolled

Gain insight into a topic and learn the fundamentals.
4.7

(3,392 reviews)

Beginner level
No prior experience required
Flexible schedule
Approx. 11 hours
Learn at your own pace
97%
Most learners liked this course
Gain insight into a topic and learn the fundamentals.
4.7

(3,392 reviews)

Beginner level
No prior experience required
Flexible schedule
Approx. 11 hours
Learn at your own pace
97%
Most learners liked this course

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

6 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 6 modules in this course

Enzyme catalysts are central to life. They are the vehicles for delivering innovative bioscience solutions to chemicals manufacture, drug discovery, therapeutics and bioprocessing. They are the key enablers in the white biotechnology revolution, providing essential components in the new science of 'synthetic biology', offering new routes to biofuels, bulk and commodity chemicals and novel therapeutics.

What's included

8 videos2 readings1 assignment

Recent advances in our ability to read and write genome sequences on a large scale have led to an ambitious vision for a new generation of biotechnology, often referred to as Synthetic Biology. Synthetic Biology aims at turning biology into an engineering discipline, in which organism engineers use computational tools to design biological systems with novel valuable functionalities, which are then built using advanced high-throughput genetic engineering, and tested by rapid screening technologies that collect diagnostic molecular profiles to drive improved designs in an iterative design-build-test cycle. This module will introduce the engineering concepts that inform Synthetic Biology and the cutting-edge technologies that underlie our dramatically increasing ability to construct living systems with custom-made functionalities. All stages of the design-build-test cycle for novel biosystems will be discussed, with a special focus on their integration in a unified bioengineering platform. Examples will focus on the application of Synthetic Biology as an enabling technology for the bioindustry, especially for the improved microbial production of high-value chemicals and drugs. A section on responsible research and innovation will explore the transformative potential of this innovative technology within a broader socio-economic context, creating awareness of the ethical and political implications of research in this field.

What's included

9 videos2 readings1 assignment

Biochemical and bioprocess engineering is concerned with the design of processes which involve biological transformations to manufacture a range of bio-based chemicals, biopharmaceuticals and biofuels. Through applying knowledge of process constraints, which are usually described mathematically, biochemical engineers are able to design a series of integrated process steps or “unit operations” which together make up a bioprocess. This module will give an appreciation of the key role biochemical engineering has in translating discoveries coming from life sciences and synthetic biology, such as improved microbial platforms for product expression, into economically viable full scale production processes. Key engineering concepts and the problem solving approach required for the design of bioprocesses will be taught by a group of biochemical engineers from The University of Manchester, University College London and Technical University of Denmark.

What's included

8 videos1 assignment

This module looks at the production of pharmaceuticals and fine chemicals using biocatalysis. Specifically, we will look at isolated biocatalytic transformations using isolated enzymes or whole cells as catalysts to manufacture commercially important products including pharmaceuticals, industrial monomers and personal care products. This module will be delivered by Dr Andy Wells of CHEM21, Europe’s largest public-private partnership dedicated to the development of manufacturing sustainable pharmaceuticals led by The University of Manchester and the pharmaceutical company GlaxoSmithKline. Dr Wells, alongside Dr Tom Dugmore of The University of York, will look at six industrial examples of biocatalytic reactions involving six different enzyme transformations. Each example will look at the product, manufacturing route, mechanism of the enzyme reaction and some of the sustainability drivers and metrics for adopting IB as part of the manufacturing route. Over the six examples, a number of key attributes of enzyme catalysed processes that need to be considered for successful scale-up will be examined. These include choice of free enzyme or whole cell catalyst, co-factors and co-factor recycling, multi-phase reactions, enzyme stability and throughput. Each example will have a number of references to the primary literature covering the product and enzyme type for further learning outside of the module.

What's included

7 videos2 readings1 assignment

Bioenergy is renewable energy extracted from biomass (organic biological material such as plants and animals, wood, waste, (hydrogen) gas, and alcohol fuels. Biomass is the fuel, bioenergy is the energy contained within that fuel. In this module we will look at biofuel production and the research and knowledge challenges associated with increasing the contribution of UK bioenergy to meet strategic environmental targets in a coherent, sustainable and cost-effective manner. In addition, we will be looking at biomaterials science and, in particular, the development of novel biomaterials and their application in a variety of industrial and medical products. Biomaterials can be derived either from nature or synthesized in the laboratory using a variety of chemical approaches utilizing metallic components, polymers, ceramics or composite materials. As a science it is around 50 years old so we will be considering the current trends and the future of biomaterials research and biomanufacturing technologies.

What's included

7 videos2 readings1 assignment

Glycoscience is the science and technology of carbohydrates, which are the most abundant biological molecules on Earth and make up part of the biology of all living organisms. This module will introduce the fundamental concepts of glycoscience, leading onto the benefits for society and how this drives and impacts the bioeconomy. A series of case studies will be used to present some of the key challenges and glycan-based solutions in pharmaceuticals and personalised medicine, food security and biomaterials. Biopharmaceuticals are new medicines that are made biologically. “Biologically” means that the production is too complex for simple chemistry and that we currently have to direct biological materials – cells, using the spectrum of natural catalytic reactions - to make these revolutionary medicines. We will be looking at the revolution in these development medicines within a clinical, societal and economic context and the approaches used to ensure production of safe and effective biopharmaceuticals, using various types of expression systems. Students will be introduced to detailed case studies that illustrate how the principles developed in other sub-modules are put into practice in the industrial context.

What's included

8 videos1 assignment

Instructors

Instructor ratings
4.6 (1,131 ratings)
Prof. Nicholas Turner
University of Manchester
1 Course121,692 learners
Prof. Nigel Scrutton
University of Manchester
1 Course121,692 learners
Dr. Nick Weise
University of Manchester
1 Course121,692 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

4.7

3,392 reviews

  • 5 stars

    74.23%

  • 4 stars

    20.96%

  • 3 stars

    3.18%

  • 2 stars

    0.67%

  • 1 star

    0.94%

Showing 3 of 3392

SM
5

Reviewed on Mar 20, 2021

SS
5

Reviewed on Jul 3, 2021

PR
5

Reviewed on Mar 17, 2024

Recommended if you're interested in Health

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy