University of Pennsylvania

AI Strategy and Governance

This course is part of AI For Business Specialization

Kartik Hosanagar
Lynn Wu
Kevin Werbach

Instructors: Kartik Hosanagar

Sponsored by PTT Global Chemical

14,991 already enrolled

Gain insight into a topic and learn the fundamentals.
4.8

(251 reviews)

Beginner level
No prior experience required
9 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
4.8

(251 reviews)

Beginner level
No prior experience required
9 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the AI For Business Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

In this module, you will begin by examining the key inputs to AI and what tools are currently used to lower the barriers of entry for AI use. Next, you will learn the economics of AI and the competition that has emerged as AI becomes more crucial to support industry needs and we see more cloud adoption. You will learn about the value of data as it is tied to Deep Learning, and how AutoML is changing the landscape of Machine Learning, and the growing competition and implications of data harvesting. By the end of this module, you will have gained knowledge about the economic implications of AI and Machine Learning and how they impact our lives in unseen ways. You will also understand the complex nature of computational hardware and how that affects consumer demand, but also the demand for privacy.

What's included

14 videos2 readings1 assignment

In this module, you will examine AI and data analytics to show the economical use-cases of Big Data. You will also learn about the methods and tools that are being used to lower the barriers of entry for AI use. You will review current examples of Big Data and how those firms are using their analytical tools to enhance productivity and transformation. Lastly, you will get an in-depth look at how AI can be used in BioPharma and how the payoff of their AI investment is revitalizing their industry. By the end of this module, you will have a firm grasp on the practical deployment of AI across different industries, their use-cases, and how you can best implement them to drive innovation and transformation within business.

What's included

8 videos1 reading1 assignment

In this module, you will examine the inherent bias that can exist within data based on human behaviors. Building on these foundations, you will explore different responses within algorithmic bias and how organizations should respond and overcome these challenges. You will then review the manipulation of data, the different kinds of manipulation, and ways to ethically approach these issues. Lastly, you will examine data protection and the legal frameworks that exist to protect the consumer and individual data, and the stages of the privacy lifecycle. By the end of this module, you will have a thorough understanding of data biases, manipulation, and ethical questions of how data is handled and stored. You will be able to implement fairer algorithms and understand the legal ramifications of improperly managing data you collect.

What's included

5 videos1 reading1 assignment

In this module, you will learn about explainable AI and its relationship to Deep Learning. You will also review why it is important to have explainable AI and the different approaches to creating fair algorithms and AI policies. You will also examine Explainable AI and review the necessity of equitable algorithms. You will also learn why we do not always use Explainable AI for every model, and the impacts that it can have on performance. By the end of this module, you will have gained insight into decision-making with AI and the importance of fairness and transparency in creating explainable AI systems, as well as the ethical principles and governance policies that build trust in using AI and Machine Learning.

What's included

7 videos1 reading1 assignment1 peer review

Instructors

Instructor ratings
4.8 (86 ratings)
Kartik Hosanagar
University of Pennsylvania
8 Courses239,451 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

4.8

251 reviews

  • 5 stars

    83.73%

  • 4 stars

    12.69%

  • 3 stars

    1.98%

  • 2 stars

    0.39%

  • 1 star

    1.19%

Showing 3 of 251

LL
5

Reviewed on Aug 10, 2024

HZ
4

Reviewed on Apr 28, 2024

MY
5

Reviewed on Jan 21, 2024

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy