La inteligencia artificial (IA) es un área del conocimiento enfocada en el diseño de componentes de hardware y software que emulen el comportamiento y pensamiento humano en la realización de tareas y toma de decisiones. Su objetivo es desarrollar capacidades computacionales que puedan resolver tareas previamente consideradas como exclusivas de la inteligencia humana. La IA ha sido especialmente útil para modelar y resolver problemas de alta complejidad que requieren del análisis de grandes volúmenes de datos y con un alto grado de incertidumbre. Por esta razón, en los últimos años, la investigación y áreas de aplicación de la IA han aumentado considerablemente, convirtiéndose en una parte esencial para el avance tecnológico y la transformación digital en la academia, la industria y los sectores empresariales.
Introducción a la inteligencia artificial contemporánea
Instructors: Pablo Andrés Arbeláez Escalante
Sponsored by IEM UEM Group
17,128 already enrolled
(247 reviews)
Recommended experience
What you'll learn
Analizar el desarrollo epistemológico de la inteligencia artificial y sus diferentes áreas de conocimiento.
Identificar las características esenciales de los paradigmas de aprendizaje de máquinas y las aplicaciones claves de la inteligencia artificial.
Reconocer las implicaciones éticas y sociales del despliegue de sistemas de inteligencia artificial en el mundo contemporáneo.
Details to know
Add to your LinkedIn profile
1 quiz, 8 assignments
See how employees at top companies are mastering in-demand skills
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 8 modules in this course
El objetivo principal de este primer módulo es introducir el concepto de inteligencia artificial, sus diferentes ramas y posibles campos de aplicación, así como analizar los aspectos éticos que giran alrededor de estos y promover una discusión hacia el futuro de esta disciplina.
What's included
2 videos4 readings1 assignment4 plugins
Durante este módulo exploraremos los diferentes ámbitos en los que han surgido desafíos éticos y conoceremos algunos recursos analíticos para enfrentar cualquier dilema ético asociado con la implementación de la inteligencia artificial.
What's included
9 videos2 readings1 assignment1 discussion prompt1 plugin
En este módulo introduciremos cómo la inteligencia artificial estudia el área de la visión por computador para desarrollar métodos que cada vez tienen habilidades más parecidas a las de la percepción humana. Analizaremos el concepto de visión por computador y los retos del procesamiento de imágenes. Adicionalmente, trataremos algunas aplicaciones que han revolucionado el mundo como lo conocemos y discutiremos de la evolución de la visión artificial.
What's included
4 videos1 assignment1 ungraded lab
El Procesamiento del Lenguaje Natural (PLN) es una disciplina de la Inteligencia Artificial que se ocupa de la formulación e investigación de mecanismos para el entendimiento de lenguaje natural del ser humano (escrito y hablado) a través de un computador. Los asistentes digitales virtuales como Alexa/Cortana, los sistemas de traducción automática, y los chatbots son algunos ejemplos de aplicaciones y sistemas de PLN. El objetivo principal de este módulo es que logres una comprensión general de esta área de la IA en relación con los problemas que aborda, su evolución, así como las grandes etapas que permiten la construcción de modelos de PLN.
What's included
4 videos1 reading1 assignment1 discussion prompt1 plugin
En este módulo analizarás las consideraciones para implementar aplicaciones de Inteligencia Artificial sobre plataformas embebidas. Se revisarán algunas arquitecturas Hardware para poder dimensionar a que nos referimos con recursos limitados y presentaremos las librerías Software que nos permiten trabajar sobre estas plataformas.
What's included
7 videos1 reading2 assignments
Desde hace más de veinte años, se reconoce el “capital conocimiento” como un valor fundamental de cualquier organización, que es necesario administrar, es decir extraer, formalizar, explotar y valorizar. La inteligencia artificial simbólica ha estudiado, desde sus orígenes, diferentes metodologías y formalismos para representar y explotar el conocimiento. La representación más utilizada en la actualidad son las ontologías, que adquieren todo su potencial en la Web semántica. A partir de la revisión de la evolución de las representaciones de conocimiento de la Inteligencia artificial simbólica, el módulo se centra en las ontologías: se estudian sus orígenes y componentes conceptuales, así como los lenguajes de representación más utilizados (RDF, URI y RDFS). El módulo termina con una introducción a la web semántica, los grafos de conocimiento o Knowledge Graphs y los datos hilados Linked data.
What's included
6 videos1 assignment
En este módulo podrás estudiar algunos ejemplos en los que se utiliza actualmente el control automático inteligente. Comprenderás los conceptos de sistema y de control a partir del análisis de ejemplos de la vida diaria para identificar elementos de retroalimentación, medida, computación y acción. Además, comprenderás qué significa un control inteligente de sistemas a partir de la identificación de dos técnicas asociadas a la toma de decisiones.
What's included
9 videos1 reading1 assignment
En este módulo comprenderás los fundamentos que subyacen al aprendizaje por refuerzo, los distintos modelos de aprendizaje existentes y cómo construir tus propios agentes inteligentes basados en el aprendizaje por refuerzo.
What's included
6 videos1 quiz1 ungraded lab2 plugins
Instructors
Offered by
Why people choose Coursera for their career
Learner reviews
247 reviews
- 5 stars
74.29%
- 4 stars
19.27%
- 3 stars
3.61%
- 2 stars
0%
- 1 star
2.81%
Showing 3 of 247
Reviewed on Nov 12, 2024
Cumple con las expectativas. Muy completo el curso, aunque se debe de tener algún conocimiento previo en python, y digamos, en un enfoque sistémico.
Reviewed on Jan 8, 2025
Sería excelente poder visualizar los resultados de los ejercicios en Python de otra manera para asegurarse de que se está haciendo correctamente.
Reviewed on Oct 17, 2024
Es muy bueno, los profesores explican muy bien y me agrada que lo hagan explicando la parte teórica y la parte practica con ejemplos. Muchas gracias por el curso.
Recommended if you're interested in Data Science
Universidad Nacional Autónoma de México
Fundação Instituto de Administração
Universitat Autònoma de Barcelona
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy