Universidad de los Andes
Modelos predictivos con aprendizaje automático
Universidad de los Andes

Modelos predictivos con aprendizaje automático

This course is part of Ciencia de datos​ Specialization

Sponsored by IEM UEM Group

3,056 already enrolled

Gain insight into a topic and learn the fundamentals.
4.7

(63 reviews)

Beginner level

Recommended experience

20 hours to complete
3 weeks at 6 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
4.7

(63 reviews)

Beginner level

Recommended experience

20 hours to complete
3 weeks at 6 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Comprender qué es el aprendizaje automático y los tipos de problemas que pueden resolverse con estas técnicas.

  • Construir modelos predictivos con base en los objetivos de negocio y los datos disponibles, con herramientas de aprendizaje automático en Python.

  • Entender el proceso para desarrollar un proyecto basado en datos, desde la formulación del problema hasta la evaluación e interpretación del modelo.

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

8 assignments

Taught in Spanish

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Ciencia de datos​ Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

Bienvenido al primer módulo del curso. Aquí te voy a mostrar, a través del estudio de algunos casos de uso, qué es el aprendizaje automático y cuáles son las características de los proyectos que pueden ser realizados con estás técnicas. Además, conocerás algunas áreas de aplicación del aprendizaje automático y sabrás diferenciar los diversos contextos de aprendizaje, supervisado y no supervisado, así como sus tareas asociadas. También tendrás la oportunidad de conocer el proceso de aprendizaje a través de una metodología y cuáles son algunas herramientas, en el lenguaje de programación Python, que puedes utilizar para la implementación de este tipo de proyectos.

What's included

7 videos7 readings2 assignments2 discussion prompts6 plugins

Bienvenido al segundo módulo del curso, el cual lo dedicaremos al estudio de la tarea de regresión. Aprenderás cómo resolver un problema de predicción numérica utilizando el algoritmo de regresión lineal, tanto simple como de múltiples variables. También conocerás algunas métricas que te permitirán medir el rendimiento del modelo generado, así como técnicas para determinar la calidad de las predicciones para datos nuevos. Por último, aplicarás estos conceptos a un caso utilizando la librería de aprendizaje automático scikit-learn.

What's included

4 videos6 readings2 assignments1 discussion prompt3 plugins

Bienvenido al tercer módulo del curso, en el cual vamos a estudiar algunas técnicas que te permitirán mejorar el rendimiento de los modelos predictivos. En primer lugar, veremos una trasformación que habilita el uso de la regresión lineal en problemas no lineales. Luego, presentaremos un concepto muy importante en al aprendizaje a partir de datos, la complejidad de modelos, y discutiremos cómo este puede afectar el rendimiento de generalización. También aprenderás qué es la regularización y cómo funciona como método de control de complejidad. Conocerás las versiones regularizadas de la regresión lineal y cómo ajustar hiperparámetros con técnicas de validación. Por último, tendrás la oportunidad de aplicar estos conceptos a un caso utilizando la librería scikit-learn.

What's included

5 videos6 readings2 assignments4 plugins

Bienvenido al último módulo del curso, en el cual estudiaremos la tarea de clasificación. Aprenderás cómo un algoritmo de aprendizaje resuelve un problema de este tipo y veremos en acción uno muy popular, los árboles de decisión. También conocerás algunas métricas para evaluar este tipo de modelos y cuál es la base a partir de la cual se derivan. Además, aplicarás los conceptos vistos sobre complejidad y ajuste de hiperparámetros para construir modelos basados en árboles de decisión con buenas capacidades de generalización. Por último, resolverás un caso utilizando la librería de aprendizaje automático scikit-learn. Para cerrar, tendrás la oportunidad de comprender las implicaciones éticas en el desarrollo de soluciones a partir de datos.

What's included

6 videos7 readings2 assignments2 plugins

Instructor

Instructor ratings
4.4 (10 ratings)
Haydemar Nuñez Castro
Universidad de los Andes
6 Courses3,564 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

4.7

63 reviews

  • 5 stars

    79.36%

  • 4 stars

    15.87%

  • 3 stars

    3.17%

  • 2 stars

    1.58%

  • 1 star

    0%

Showing 3 of 63

JR
5

Reviewed on Jun 17, 2024

Recommended if you're interested in Data Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy