Packt
Recommender Systems: An Applied Approach using Deep Learning
Packt

Recommender Systems: An Applied Approach using Deep Learning

Sponsored by University of Michigan

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

3 hours to complete
3 weeks at 1 hour a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

3 hours to complete
3 weeks at 1 hour a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Learn about deep learning and recommender systems

  • Explore the mechanisms of deep learning-based approaches

  • Learn to implement a two-tower model and TensorFlow for recommender system

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

1 assignment

Taught in English
Recently updated!

September 2024

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 3 modules in this course

In this module, we will introduce you to the instructor, providing a brief overview of their background and teaching style. You will also get a comprehensive outline of the course, including the main topics and concepts that will be covered, setting the stage for your learning journey ahead.

What's included

2 videos1 reading

In this module, we will delve into the foundational aspects of deep learning as it pertains to recommender systems. You will gain insights into transitioning from machine learning to deep learning, deploying models for inference, and understanding the intricacies of neural and variational autoencoder collaborative filtering. Additionally, you will explore the pros and cons of deep learning models and assess their effectiveness in recommender systems.

What's included

11 videos

In this module, we will guide you through creating a project that develops an Amazon product recommendation system. You will learn to use TensorFlow Recommenders, implement the two-tower model, and visualize data with WordCloud. The lessons cover downloading necessary libraries, preparing and rating data, performing train-test splits, and building the model. Finally, we will evaluate model accuracy and generate product recommendations.

What's included

15 videos1 assignment

Instructor

Packt - Course Instructors
Packt
375 Courses34,380 learners

Offered by

Packt

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Recommended if you're interested in Computer Science

Placeholder

Open new doors with Coursera Plus

Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy