This is a guided project on fine-tuning a Bidirectional Transformers for Language Understanding (BERT) model for text classification with TensorFlow. In this 2.5 hour long project, you will learn to preprocess and tokenize data for BERT classification, build TensorFlow input pipelines for text data with the tf.data API, and train and evaluate a fine-tuned BERT model for text classification with TensorFlow 2 and TensorFlow Hub.
New year. Big goals. Bigger savings. Unlock a year of unlimited access to learning with Coursera Plus for $199. Save now.
Fine Tune BERT for Text Classification with TensorFlow
Instructor: Snehan Kekre
17,458 already enrolled
Included with
(202 reviews)
Recommended experience
What you'll learn
Build TensorFlow Input Pipelines for Text Data with the tf.data API
Tokenize and Preprocess Text for BERT
Fine-tune BERT for text classification with TensorFlow 2 and TensorFlow Hub
Skills you'll practice
Details to know
Add to your LinkedIn profile
Only available on desktop
See how employees at top companies are mastering in-demand skills
Learn, practice, and apply job-ready skills in less than 2 hours
- Receive training from industry experts
- Gain hands-on experience solving real-world job tasks
- Build confidence using the latest tools and technologies
About this Guided Project
Learn step-by-step
In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:
Introduction to the Project
Setup your TensorFlow and Colab Runtime
Download and Import the Quora Insincere Questions Dataset
Create tf.data.Datasets for Training and Evaluation
Download a Pre-trained BERT Model from TensorFlow Hub
Tokenize and Preprocess Text for BERT
Wrap a Python Function into a TensorFlow op for Eager Execution
Create a TensorFlow Input Pipeline with tf.data
Add a Classification Head to the BERT hub.KerasLayer
Fine-Tune and Evaluate BERT for Text Classification
Recommended experience
It is assumed that are competent in Python programming and have prior experience with building deep learning NLP models with TensorFlow or Keras
8 project images
Instructor
Offered by
How you'll learn
Skill-based, hands-on learning
Practice new skills by completing job-related tasks.
Expert guidance
Follow along with pre-recorded videos from experts using a unique side-by-side interface.
No downloads or installation required
Access the tools and resources you need in a pre-configured cloud workspace.
Available only on desktop
This Guided Project is designed for laptops or desktop computers with a reliable Internet connection, not mobile devices.
Why people choose Coursera for their career
Learner reviews
202 reviews
- 5 stars
71.07%
- 4 stars
20.58%
- 3 stars
4.41%
- 2 stars
1.47%
- 1 star
2.45%
Showing 3 of 202
Reviewed on Dec 12, 2021
Excellent and very helpful course, the instructor language is very clear and concise and to the point, I would love to learn more from the same instructor.
Reviewed on Jun 19, 2021
The project is very clear and easy to follow. Would suggest providing some gmail account so that we don't have to log into the colab using our own google credentials.
Reviewed on Dec 24, 2021
I have some experience on computer vision and need to take a NLP project, this course give me a heads up on the project.
You might also like
Coursera Project Network
DeepLearning.AI
New to Machine Learning? Start here.
Open new doors with Coursera Plus
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.
Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.
You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.