10 Machine Learning Applications + (Real-World Examples)
February 6, 2025
Article · 8 min read
Instructor: Epaminondas Kapetanios
2,339 already enrolled
Included with
(22 reviews)
Recommended experience
Beginner level
Some prior knowledge of machine learning basics and programming in Python
(22 reviews)
Recommended experience
Beginner level
Some prior knowledge of machine learning basics and programming in Python
Apply Local Interpretable Model-agnostic Explanations (LIME) as a machine learning interpretation
Explain individual predictions being made by a trained machine learning model.
Add aspects for individual predictions in your Machine Learning applications.
Add to your LinkedIn profile
Only available on desktop
By the end of this project, you will be able to develop intepretable machine learning applications explaining individual predictions rather than explaining the behavior of the prediction model as a whole. This will be done via the well known Local Interpretable Model-agnostic Explanations (LIME) as a machine learning interpretation and explanation model. In particular, in this project, you will learn how to go beyond the development and use of machine learning (ML) models, such as regression classifiers, in that we add on explainability and interpretation aspects for individual predictions.
In this sense, the project will boost your career as a ML developer and modeler in that you will be able to explain and justify the behaviour of your ML model. The project will also benefit your career as a decision-maker in an executive position interested in deploying trusted and accountable ML applications. This guided project is primarily targeting data scientists and machine learning modelers, who wish to enhance their machine learning application development with explanation components for predictions being made. The guided project is also targeting executive planners within business companies and public organizations interested in using machine learning applications for automating, or informing, human decision making, not as a ‘black box’, but also gaining some insight into the behavior of a machine learning classifier.
In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:
Explore and understand the features and values from the available data about red wine quality
Transform the available data into a classification dataset and problem
Prepare the data for training and validation purposes
Train, validate, estimate, and contrast the performance of three regression classifiers: Decision Tree, Random Forest, AdaBoost
Prepare and train the “explainer” in terms of the LIME library
Display and interpret explanations of individual predictions made by the three classifiers
Some prior knowledge of machine learning basics and programming in Python
The Coursera Project Network is a select group of instructors who have demonstrated expertise in specific tools or skills through their industry experience or academic backgrounds in the topics of their projects. If you're interested in becoming a project instructor and creating Guided Projects to help millions of learners around the world, please apply today at teach.coursera.org.
Skill-based, hands-on learning
Practice new skills by completing job-related tasks.
Expert guidance
Follow along with pre-recorded videos from experts using a unique side-by-side interface.
No downloads or installation required
Access the tools and resources you need in a pre-configured cloud workspace.
Available only on desktop
This Guided Project is designed for laptops or desktop computers with a reliable Internet connection, not mobile devices.
Coursera Project Network
Course
Coursera Project Network
Course
Coursera Project Network
Course
Coursera Project Network
Course
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.
Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.
Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.
You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.
Guided Projects are not eligible for refunds. See our full refund policy.
Financial aid is not available for Guided Projects.
Auditing is not available for Guided Projects.
At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.
Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.
You'll learn by doing through completing tasks in a split-screen environment directly in your browser. On the left side of the screen, you'll complete the task in your workspace. On the right side of the screen, you'll watch an instructor walk you through the project, step-by-step.