Pandas Cheat Sheet

Written by Coursera • Updated on

Discover essential Pandas functions with this comprehensive cheat sheet. Import, export, clean, and analyze data efficiently using Python's powerful Pandas library. Perfect for quick reference and mastering data manipulation

Pandas Cheat Sheet

Pandas is an essential library for data manipulation and analysis in Python, renowned for its capabilities to handle and process large datasets efficiently. Whether you're a beginner or a seasoned data professional, Pandas provides flexible data structures and functions that make data analysis seamless and straightforward. This cheat sheet is a quick reference guide for some of the most common operations you might perform with the Pandas library.

Pandas Cheat Sheet

Click to download

Importing Data

Action Definition Example Code Snippet
Import Standard import statement to bring Pandas into the script import pandas as pd
Read_CSV Reads a comma-separated values (CSV) file into DataFrame df = pd.read_csv('file.csv')
Read_Table Reads a general delimited file into DataFrame df = pd.read_table('file.txt')
Read_Excel Reads an Excel file into DataFrame df = pd.read_excel('file.xlsx')
Read_SQL Reads SQL query or database table into DataFrame df = pd.read_sql('SELECT * FROM table', conn)
Read_JSON Reads a JSON formatted string into DataFrame df = pd.read_json('file.json')
Read_HTML Reads HTML tables into DataFrame df = pd.read_html('url')
Clipboard Reads text from the clipboard into DataFrame df = pd.read_clipboard()

Exporting Data

Action Definition Example Code Snippet
To_CSV Writes DataFrame to a comma-separated values (CSV) file df.to_csv('file.csv')
To_Excel Writes DataFrame to an Excel file df.to_excel('file.xlsx')
To_SQL Writes DataFrame to a SQL database df.to_sql('table_name', conn)
To_JSON Writes DataFrame to a JSON formatted string df.to_json('file.json')
To_HTML Writes DataFrame to HTML tables df.to_html('file.html')
To_Clipboard Writes DataFrame to the clipboard df.to_clipboard()

Create Test Objects

Action Definition Example Code Snippet
Dataframe Constructs a DataFrame object df = pd.DataFrame(data)
Series Constructs a Series object s = pd.Series(data)
Index Constructs an Index object index = pd.Index(data)

Working with DataFrames

DataFrame Basics

Action Definition Example Code Snippet
Return Dimensions of a DataFrame Gets shape of DataFrame df.shape
Read CSV file into a DataFrame Reads CSV and returns DataFrame object df = pd.read_csv('file.csv')
Return the data type of each column Returns data types of columns in DataFrame df.dtypes

Selecting DataFrame Values

Action Definition Example Code Snippet
Select the rank column from f500 Selects a specific column from DataFrame f500['rank']
Select the first 3 rows from f500 Slices the DataFrame f500.head(3)

LOC

Action Definition Example Code Snippet
LOC Access a group of rows and columns by labels df.loc[row_index, 'column_name']

ILOC

Action Definition Example Code Snippet
ILOC Access a group of rows and columns by integer index df.iloc[row_index, col_index]

Boolean Masks

Action Definition Example Code Snippet
Boolean Masks Filters DataFrame based on a condition df[df['column'] > value]

Boolean Operators

Action Definition Example Code Snippet
Boolean Operators Combines multiple conditions for filtering df[(df['column'] > value) & (df['column'] < value2)]

Graphs

Action Definition Example Code Snippet
Generate a frequent table from a series object Counts unique values in Series series.value_counts()
Generate a sorted frequency table from series object Counts and sorts unique values series.value_counts().sort_values()
Generate a vertical bar plot from a series object Plots bar chart from Series series.plot.bar()
Generate a horizontal bar plot from a series object Plots horizontal bar chart from Series series.plot.barh()
Generate a line plot from a DataFrame object Plots line chart from DataFrame df.plot.line()
Generate a scatter plot from a DataFrame object Plots scatter chart df.plot.scatter(x='col1', y='col2')

Data Cleaning

Action Definition Example Code Snippet
Columns Access columns of DataFrame as attributes df.columns
Isnull Detects missing values df.isnull()
Notnull Detects non-missing values df.notnull()
Dropna Removes missing values df.dropna()
Fillna Fills missing values df.fillna(value)
Astype Converts data type of a DataFrame column df['col'] = df['col'].astype('int')
Replace Replaces values df.replace(to_replace, value)
Rename Renames DataFrame columns df.rename(columns={'old': 'new'})
Set_index Sets DataFrame index df.set_index('col')
Finding correlation Computes pairwise correlation of columns df.corr()
Converting a column to datetime Converts column to datetime format df['date'] = pd.to_datetime(df['date'])

Join and Combine

Action Definition Example Code Snippet
Append Appends rows of other DataFrame to the end df.append(other_df)
Concat Concatenate pandas objects along a particular axis pd.concat([df1, df2])
Join Joins columns of another DataFrame df.join(other_df)

Statistics

Action Definition Example Code Snippet
Describe Generates descriptive statistics df.describe()
Mean Computes mean of DataFrame df.mean()
Corr Computes pairwise correlation of columns df.corr()
Count Returns the number of non-NA/null observations df.count()
Max Returns the maximum of DataFrame values df.max()
Min Returns the minimum of DataFrame values df.min()
Median Computes the median of DataFrame columns df.median()
STD Computes the standard deviation of DataFrame columns df.std()

This cheat sheet covers the essential functions and commands you'll need when working with Pandas in Python, providing quick references to keep your data analysis workflows smooth and productive. 

Further Python Resources:

Popular Python Courses:

Updated on
Written by:

Coursera

Writer

Coursera is the global online learning platform that offers anyone, anywhere access to online course...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.