Computer Science vs. Computer Engineering: How the Jobs Differ
October 23, 2024
Article
Cultivate your career with expert-led programs, job-ready certificates, and 10,000 ways to grow. All for $25/month, billed annually. Save now
Introducción a la Inteligencia Artificial. Conoce distintas técnicas y conceptos relacionados a la construcción de sistemas inteligentes.
Instructors: Stalin Muñoz Gutiérrez
13,357 already enrolled
Included with
(358 reviews)
(358 reviews)
Add to your LinkedIn profile
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
Este Programa especializado está dirigido a personas con interés en conocer más sobre los diversos desarrollos que han sido generados en décadas recientes en el área de inteligencia artificial. Al concluir este Programa compuesto de ocho cursos y un proyecto culminante, los estudiantes tendrán un amplio panorama y un dominio básico de las técnicas que se pueden usar para construir sistemas inteligentes. También se habrán discutido las implicaciones filosóficas, éticas y sociales que los desarrollos tecnológicos en inteligencia artificial podrían tener. La inteligencia artificial actualmente se aplica en una gran variedad de áreas y hay una alta demanda laboral en empresas y organizaciones de todo tipo, por lo que los estudiantes adquirirán diversas herramientas que podrán aplicar en su entorno profesional.
Applied Learning Project
En el proyecto culminante del programa especializado Introducción a la Inteligencia Artificial, los estudiantes aplicarán conceptos adquiridos durante el programa a un problema de su elección.
El proyecto involucrará tanto el desarrollo de un programa de software o hardware como la escritura de un ensayo. Se extenderá por lo menos uno de los temas cubiertos en el programa especializado, realizando una implementación, comparándolo con otras técnicas y reportando los resultados en un ensayo. La evaluación será por pares.
Los objetivos del proyecto son:
Aplicar el conocimiento adquirido durante el programa especializado a un dominio particular.
Implementar tecnología de IA con un propósito específico.
Comparar la solución desarrollada con existentes.
Reportar los resultados en un ensayo estructurado (máximo 10 páginas).
En este curso, ofrecido por la UNAM, cubriremos el pasado, presente y futuro de la inteligencia artificial. También mencionaremos los conceptos más importantes que serán útiles en el resto del programa especializado. Discutiremos las implicaciones sociales, éticas y filosóficas de los desarrollos en inteligencia artificial.
El razonamiento formal juega un papel importante en la inteligencia artificial. Hay dos maneras principales de formalizar razonamiento: una que enfatiza la deducción (lógica), y otra que enfatiza la incertidumbre (teoría de la probabilidad). En este curso vamos a cubrir una introducción tanto a la lógica (vamos a cubrir tres lógicas) como a la teoría de la probabilidad (vamos a cubrir tres modelos gráficos probabilísticos).
Algunas tareas requieren programación básica en Python: El alumno deberá completar código al que se le ha eliminado una parte.
El curso trata de resolución automática de problemas por medio de algoritmos de búsqueda.
Aprenderás a abstraer un problema como un grafo de estados-acciones y a dimensionar su complejidad por medio de la identificación de parámetros. Además, te mostraremos cómo analizar el consumo de recursos computacionales de los algoritmos para seleccionar o adaptar el más apropiado al problema. Nos interesa que puedas aplicar los algoritmos a problemas concretos. Te acompañaremos en la implementación de los algoritmos en el lenguaje de programación Python y te mostraremos algunos ejemplos de su aplicación a ciertos problemas modelo. Al final podrás probar tus algoritmos en un espacio de búsqueda interesante: el resolver el cubo de Rubik.
La computación evolutiva (evolutionary computation, EC), aplica la teoría de la evolución natural y la genética en la adaptación evolutiva de estructuras computacionales, proporcionando un medio alternativo para atacar problemas complejos en diversas áreas, como la ingeniería, economía, química, medicina y, porque no, las artes. Una población de posibles soluciones de un problema dado es análoga a una población de organismos vivos que evolucionan cada generación, al recombinar los mejores individuos de la población y transmitir sus características de dichos individuos padres, a sus descendientes. En este campo, diferentes esquemas de métodos evolutivos se han desarrollado, los cuales difieren en el tipo de estructuras que conforman la población.
Algoritmos evolutivos (AE), como también se le conoce al cómputo evolutivo (EC), se definen como métodos de optimización y búsqueda, los cuales están inspirados y tratan de imitar de manera parcial los procesos de la evolución natural, y mantienen una población de estructuras que evolucionan de acuerdo a reglas de selección y otros operadores genéticos, como cruzamiento y mutación (Bäck, 1996). Los algoritmos evolutivos no son los únicos métodos de optimización propuestos a partir de sistemas biológicos. Se tiene una variedad de algoritmos de optimización, que tratan de imitar el comportamiento de sistemas naturales, como las colonias de hormigas, algoritmos culturales y optimización por cúmulos de partículas, entre otros. De aquí surge lo que se conoce como algoritmos bioinspirados, ya que toman sus bases a partir de la estructura de procesos y sistemas biológicos: la evolución, la selección natural, comportamiento social de animales, como las hormigas, abejas, peces. BÄCK, T. (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press. DARWIN, C. (1859) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, John Murray.
Los seres vivos han evolucionado en entornos cambiantes, por lo que han desarrollado mecanismos que les permiten exhibir comportamiento adaptativo. Usando el método sintético, podemos construir sistemas artificiales adaptativos que implementen dichos mecanismos, con lo cual también podemos incrementar nuestra comprensión de los sistemas naturales.
En este curso veremos diversos conceptos que se han aplicado en la inteligencia artificial con orígenes en la biología y en la cibernética. Construyendo sobre ejemplos de sistemas vivos, revisaremos diversos algoritmos que permiten a los sistemas adaptarse y de esta manera enfrentar a la complejidad y cambios de su entorno. También cubriremos temas relacionados con la robustez, la cual complementa a la adaptación. Finalmente, veremos algunas aplicaciones de este tipo de inteligencia artificial. En el proyecto final, se desarrollará un sistema artificial que exhiba comportamiento adaptativo.
¿Qué es la creatividad? ¿Pueden ser creativas las computadoras? ¿Cómo, cuándo y con qué objetivo surgió esta nueva área de investigación? ¿Hasta dónde hemos llegado en la creación de sistemas “creativos” y qué teorías, metodologías y técnicas podemos usar para programar y evaluar este tipo de sistemas en generación de narrativas, música, descubrimiento científico, artes visuales, etcétera?
Analizaremos éstas y otras preguntas, y discutiremos sobre sus implicaciones a lo largo del curso. Asimismo, conforme avances en las lecciones, irás construyendo poco a poco tu propio agente artificial creativo. Es indispensable que cuentes con conocimientos básicos en programación (Python) y algoritmos genéticos.
1. Conocer la historia y los conceptos principales usados en ciencias cognitivas.
2. Reflexionar sobre la relevancia del cuerpo, el entorno, la cultura y tecnología y los procesos dinámicos en el estudio de la mente.
3. Revisar problemas abiertos en cognición y conciencia artificial, al igual que aspectos sociales de la cognición.
En el proyecto culminante del programa especializado Introducción a la Inteligencia Artificial, los estudiantes aplicarán conceptos adquiridos durante el programa en un problema de su elección.
El proyecto involucrará el desarrollo de un programa de software y la escritura de un ensayo. Se extenderá por lo menos uno de los temas cubiertos en el programa especializado, realizando una implementación, comparándolo con otras técnicas y reportando los resultados en un ensayo. La evaluación será por pares. Los objetivos del proyecto son: * Aplicar el conocimiento adquirido durante el programa especializado a un dominio particular. * Implementar tecnología de IA con un propósito específico. * Comparar la solución desarrollada con existentes. * Reportar los resultados en un ensayo estructurado (máximo 10 páginas).
La Universidad Nacional Autónoma de México fue fundada el 21 de septiembre de 1551 con el nombre de la Real y Pontificia Universidad de México. Es la más grande e importante universidad de México e Iberoamérica. Tiene como propósito primordial estar al servicio del país y de la humanidad, formar profesionistas útiles a la sociedad, organizar y realizar investigaciones, principalmente acerca de las condiciones y problemas nacionales, y extender con la mayor amplitud posible, los beneficios de la cultura.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
Para los cursos prácticos:
Programación básica en Python (Curso disponible en https://www.coursera.org/learn/python )
Álgebra (Curso disponible en https://www.coursera.org/learn/algebra-basica )
No es necesario, pero se recomienda seguir el orden del programa.
Tener un amplio entendimiento teórico y práctico de distintas ramas de la inteligencia artificial, con la capacidad de analizar problemas en una diversidad de dominios, decidir qué herramientas son las más apropiadas e implementar una solución.
This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. If you only want to read and view the course content, you can audit the course for free. If you cannot afford the fee, you can apply for financial aid.
This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.
Financial aid available,