Prompt Engineering Jobs: Your 2025 Career Guide
January 14, 2025
Article
Instructors: MOUSSA DOUMBIA
2,194 already enrolled
Included with
(27 reviews)
Recommended experience
Beginner level
Familiarity with mathematical thinking and concepts, some knowledge of Calculus, and a basic understanding of Python (all of these are not required)
(27 reviews)
Recommended experience
Beginner level
Familiarity with mathematical thinking and concepts, some knowledge of Calculus, and a basic understanding of Python (all of these are not required)
Use Python to solve vector equations
Apply linear algebra concepts such as the inverse of a matrix, row reduction, and eigenvalues and eigenvectors
Use regression models
Apply linear algebra to analyze data, create, and make predictions based off of a regression model
Add to your LinkedIn profile
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
This Specialization is for learners interested in exploring or pursuing careers in data science or understanding some data science for their current roles. This course will build upon your previous mathematical foundations and equip you with key applied tools for using and analyzing large data sets.
Applied Learning Project
Throughout this specialization, learners can practice individually and with peers using Python and linear algebra concepts. Learners will also engage in programming assignments, peer-graded assignments, quizzes, and discussion topics such as data modeling and matrices. For the Capstone project, learners will employ linear regression models to solve real-world problems, apply skills to analyze data, and develop linear regression models to make predictions.
This course is the first of a series that is designed for beginners who want to learn how to apply basic data science concepts to real-world problems. You might be a student who is considering pursuing a career in data science and wanting to learn more, or you might be a business professional who wants to apply some data science principles to your work. Or, you might simply be a curious, lifelong learner intrigued by the powerful tools that data science and math provides. Regardless of your motivation, we’ll provide you with the support and information you need to get started.
In this course, we'll cover the fundamentals of linear algebra, including systems of linear equations, matrix operations, and vector equations. Whether you’ve learned some of these concepts before and are looking for a refresher or you’re brand new to the ideas we’ll cover, you’ll find the materials to support you. Let's get started!
In this course, you'll be introduced to finding inverses and matrix algebra using Python. You will also practice using row reduction to solve linear equations as well as practice how to define linear transformations. Let's get started!
In this course, you'll learn how to distinguish between the different types of regression models. You will apply the Method of Least Squares to a dataset by hand and using Python. In addition, you will learn how to employ a linear regression model to identify scenarios. Let's get started!
In this course, you'll review the specifics of the Capstone project. In addition, you will create and run your regression model and share your results with your peers. Let's get started!
Founded in 1867, Howard University is a private, research university that is comprised of 14 schools and colleges. Students pursue more than 140 programs of study leading to undergraduate, graduate and professional degrees. The University operates with a commitment to Excellence in Truth and Service and has produced one Schwarzman Scholar, three Marshall Scholars, four Rhodes Scholars, 12 Truman Scholars, 25 Pickering Fellows and more than 165 Fulbright recipients. Howard also produces more on-campus African American Ph.D. recipients than any other university in the United States. For more information on Howard University, visit www.howard.edu.
Unlimited access to 10,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Earn a degree from world-class universities - 100% online
Upskill your employees to excel in the digital economy
The Linear Algebra for Data Science Using Python Specialization consists of four four-week courses. The time to completion will vary based on your schedule.
Yes, it is recommended to take each course in the order presented in the Linear Algebra for Data Science Using Python Specialization.
This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.
Yes. In select learning programs, you can apply for financial aid or a scholarship if you can’t afford the enrollment fee. If fin aid or scholarship is available for your learning program selection, you’ll find a link to apply on the description page.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. If you only want to read and view the course content, you can audit the course for free. If you cannot afford the fee, you can apply for financial aid.
This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.
These cookies are necessary for the website to function and cannot be switched off in our systems. They are usually only set in response to actions made by you which amount to a request for services, such as setting your privacy preferences, logging in or filling in forms. You can set your browser to block or alert you about these cookies, but some parts of the site will not then work.
These cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.
These cookies allow us to count visits and traffic sources so we can measure and improve the performance of our site. They help us to know which pages are the most and least popular and see how visitors move around the site. If you do not allow these cookies we will not know when you have visited our site, and will not be able to monitor its performance.
These cookies enable the website to provide enhanced functionality and personalization. They may be set by us or by third party providers whose services we have added to our pages. If you do not allow these cookies then some or all of these services may not function properly.